f(x)=(x−4)(x+2)3(x−1)(x+2) x−4=0,x+2=0
Domain:(−∞,−2)∩(−2,4)∩(4,∞)
(c)
x→−2−limf(x)=x→−2−lim(x−4)(x+2)3(x−1)(x+2)
=x→−2−limx−43(x−1)=−2−43(−2−1)=23
x→−2+limf(x)=x→−2+lim(x−4)(x+2)3(x−1)(x+2)
=x→−2+limx−43(x−1)=−2−43(−2−1)=23
x→−2−limf(x)=21=x→−2+limf(x)=>x→−2limf(x)=21 The function f(x) has a removable discontinuity at x=−2.
x→4−limf(x)=x→4−lim(x−4)(x+2)3(x−1)(x+2)
=x→4−limx−43(x−1)=−∞
x→4+limf(x)=x→4+lim(x−4)(x+2)3(x−1)(x+2)=x→4+limx−43(x−1)=∞ Vertical asymptote: x=4
(d)
x=0,f(0)=(0−4)(0+2)3(0−1)(0+2)=43 Point (0,43) is y -intercept.
y=0,0=(x−4)(x+2)3(x−1)(x+2)=>x=1 Point (1,0) is x -intercept.
Comments