Question #236684

f(x) = 3(x-1)(x+2)/ (x-4) (x+2)

c) state and plot the removable discontinuities

d) state the y intercepts


1
Expert's answer
2021-09-16T00:46:41-0400
f(x)=3(x1)(x+2)(x4)(x+2)f(x)=\dfrac{3(x-1)(x+2)}{(x-4)(x+2)}

x40,x+20x-4\not=0, x+2\not=0


Domain:(,2)(2,4)(4,)Domain: (-\infin, -2)\cap (-2, 4)\cap (4, \infin)

(c)


limx2f(x)=limx23(x1)(x+2)(x4)(x+2)\lim\limits_{x\to-2^-}f(x)=\lim\limits_{x\to-2^-}\dfrac{3(x-1)(x+2)}{(x-4)(x+2)}

=limx23(x1)x4=3(21)24=32=\lim\limits_{x\to-2^-}\dfrac{3(x-1)}{x-4}=\dfrac{3(-2-1)}{-2-4}=\dfrac{3}{2}



limx2+f(x)=limx2+3(x1)(x+2)(x4)(x+2)\lim\limits_{x\to-2^+}f(x)=\lim\limits_{x\to-2^+}\dfrac{3(x-1)(x+2)}{(x-4)(x+2)}


=limx2+3(x1)x4=3(21)24=32=\lim\limits_{x\to-2^+}\dfrac{3(x-1)}{x-4}=\dfrac{3(-2-1)}{-2-4}=\dfrac{3}{2}


limx2f(x)=12=limx2+f(x)=>limx2f(x)=12\lim\limits_{x\to-2^-}f(x)=\dfrac{1}{2}=\lim\limits_{x\to-2^+}f(x)=>\lim\limits_{x\to-2}f(x)=\dfrac{1}{2}

The function f(x)f(x) has a removable discontinuity at x=2.x=-2.



limx4f(x)=limx43(x1)(x+2)(x4)(x+2)\lim\limits_{x\to4^-}f(x)=\lim\limits_{x\to4^-}\dfrac{3(x-1)(x+2)}{(x-4)(x+2)}

=limx43(x1)x4==\lim\limits_{x\to4^-}\dfrac{3(x-1)}{x-4}=-\infin





limx4+f(x)=limx4+3(x1)(x+2)(x4)(x+2)\lim\limits_{x\to4^+}f(x)=\lim\limits_{x\to4^+}\dfrac{3(x-1)(x+2)}{(x-4)(x+2)}=limx4+3(x1)x4==\lim\limits_{x\to4^+}\dfrac{3(x-1)}{x-4}=\infin

Vertical asymptote: x=4x=4

(d)


x=0,f(0)=3(01)(0+2)(04)(0+2)=34x=0, f(0)=\dfrac{3(0-1)(0+2)}{(0-4)(0+2)}=\dfrac{3}{4}

Point (0,34)(0, \dfrac{3}{4}) is yy -intercept.



y=0,0=3(x1)(x+2)(x4)(x+2)=>x=1y=0, 0=\dfrac{3(x-1)(x+2)}{(x-4)(x+2)}=>x=1

Point (1,0)(1, 0) is xx -intercept.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS