Let us find the derivative of f(x)=2x−12 at x=1 using the first principle of differentiation:
f′(1)=x→1limx−1f(x)−f(1)=x→1limx−12x−12−2⋅1−12=x→1limx−12x−12−2=x→1limx−12x−12−4x+2=x→1lim(2x−1)(x−1)4−4x=x→1lim(2x−1)(x−1)−4(x−1)=x→1lim2x−1−4=2⋅1−1−4=−4.
Comments
Leave a comment