Question #229617
Determine the price p which result in maximum total revenue
1
Expert's answer
2021-09-01T17:57:48-0400

p=500150q,where p=price and q=demandR(q)=p×q=500q150q2,textwhereR=revenueAnd, maximum revenue is given by derivative of Revenue functionR(q)=500250q0=500250qq=12500p=250Therefore, Revenue R is maximum when price p=250.p=500-\frac{1}{50}q,\\ \text{where p=price and q=demand}\\ R(q)=p×q=500q-\frac{1}{50}q^2, text{where R = revenue}\\ \text{And, maximum revenue is given by derivative of Revenue function}\\ R'(q)=500-\frac{2}{50}q\\ 0=500-\frac{2}{50}q\\ q=12500\\ p=250 \text{Therefore, Revenue R is maximum when price p=250.}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS