Let radius of cylinder be r and height be h as in the diagram above.
So in ∆ABC and ∆ADE;
"\\frac{AB}{AD}=\\frac{BC}{DE}"
="\\frac{(H-h)}{H}=\\frac{r}{R}"
"\\implies r=\\frac{(H-h)}{H}R"
Volume of cylinder=πr2h
="\u03c0*(\\frac{(H-h)^{2}}{H^{2}})R^{2}*h"
V(h)="\\frac{\u03c0R^{2}}{H^{2}}(H^{2}+h^{2}-2Hh)h"
="\\frac{\u03c0R^{2}}{H^{2}}*(H^{2}h+h^{3}-2h^{2}H)"
"\\frac{dV(h)}{dh}=0" for maximum volume
So we differentiate (H2h+h3-2h2H) with respect to h
=H2+3h2-4hH=0
3h2-3hH-hH+H2=0
3h(h-H)-H(h-H)=0
(h-H)(3h-H)=0
"\\therefore" h="\\frac{H}{3}"
V="\\frac{\u03c0R^{2}}{H^{2}}*[(H^{2}*\\frac{H}{3})+(\\frac{H}{3})^{3}-2(\\frac{H}{3})^{2}*H]"
="\\frac{\u03c0R^{2}}{H^{2}}*[\\frac{H^{3}}{3}+\\frac{H^{3}}{27}-\\frac{2H^{3}}{9}]"
="\\frac{\u03c0R^{2}}{H^{2}}*\\frac{4H^{3}}{27}"
=4πH"\\frac{R^{2}}{27}"
Vmax="4\u03c0H\\frac{R^{2}}{27}"
r=3, H=9
Vmax="4*\u03c0*9*\\frac{3^{2}}{27}"
=37.699 cubic units
Comments
Leave a comment