Answer to Question #229571 in Calculus for Natty Des

Question #229571
3. Find the maximum volume of a right - circular cylinder that can be inscribed in a right-circular cone of
radius R = 3 and height H = 9.
1
Expert's answer
2021-09-15T02:58:11-0400


Let radius of cylinder be r and height be h as in the diagram above.

So in ∆ABC and ∆ADE;

ABAD=BCDE\frac{AB}{AD}=\frac{BC}{DE}

=(Hh)H=rR\frac{(H-h)}{H}=\frac{r}{R}

    r=(Hh)HR\implies r=\frac{(H-h)}{H}R

Volume of cylinder=πr2h

=π((Hh)2H2)R2hπ*(\frac{(H-h)^{2}}{H^{2}})R^{2}*h

V(h)=πR2H2(H2+h22Hh)h\frac{πR^{2}}{H^{2}}(H^{2}+h^{2}-2Hh)h

=πR2H2(H2h+h32h2H)\frac{πR^{2}}{H^{2}}*(H^{2}h+h^{3}-2h^{2}H)

dV(h)dh=0\frac{dV(h)}{dh}=0 for maximum volume

So we differentiate (H2h+h3-2h2H) with respect to h

=H2+3h2-4hH=0

3h2-3hH-hH+H2=0

3h(h-H)-H(h-H)=0

(h-H)(3h-H)=0

\therefore h=H3\frac{H}{3}

V=πR2H2[(H2H3)+(H3)32(H3)2H]\frac{πR^{2}}{H^{2}}*[(H^{2}*\frac{H}{3})+(\frac{H}{3})^{3}-2(\frac{H}{3})^{2}*H]

=πR2H2[H33+H3272H39]\frac{πR^{2}}{H^{2}}*[\frac{H^{3}}{3}+\frac{H^{3}}{27}-\frac{2H^{3}}{9}]

=πR2H24H327\frac{πR^{2}}{H^{2}}*\frac{4H^{3}}{27}

=4πHR227\frac{R^{2}}{27}

Vmax=4πHR2274πH\frac{R^{2}}{27}

r=3, H=9

Vmax=4π932274*π*9*\frac{3^{2}}{27}

=37.699 cubic units



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment