ArightcircularcylinderisinscribedinaconewithheighthandbaseradiusrFindthelargestvolumeofsuchacaseh=heightofconer=radiusofconevolumeofcylinderchangesasafunctionofcylinder’sradius,xvolumeofcylinder=(Areaofcylinder)(heightofcylinder)volumeofcylinder=(π(x2))(heightofcylinder)h−y=heightofcylindery=heightbetweenheightofcylinderandtoofconeusethediagramofsimilartrianglesatrightxy=rhy=rhxvolumeofcylinder=(π(x2))(h−y)=(π(x2))(h−hx/r)=(π(x2)h−π(x3)h/r)−−>eq(1)v’(x)=2πxh−3πhπ(x2)/r=πxh(2−3x/r)sox=0,x=2r/3v’’(x)=2πh−6πhx/rifx=2r/3−−−−−>secondderivativetestgivesmaximumvolumev’’(2r/3)=−2π<0−−−−−>eq(1)v(2r/3)=π(2r/3)2h−πh/r(2r/3)3=274π(r2)hMaximumvolumeofcylinderinscribedinaconeofradiusrandheighth=274π(r2)h
Comments