"A\\>right\\>circular\\>cylinder\\>is\\>inscribed\\>in\\>a\\>cone\\>with\\>height\\>h\\>and\\>base\\>radius\\>r\\\\Find\\>the\\>largest\\>volume\\>of\\>such\\>a\\>case\\>\\\\h=height\\>of\\>cone\\\\r=radius\\>of\\>cone\\\\volume\\>of\\>cylinder\\>changes\\>as\\>a\\>function\\>of\\>cylinder\u2019s\\>radius,\\>x\\>\\\\volume\\>of\\>cylinder\\>=(Area\\>of\\>cylinder)(height\\>of\\>cylinder)\\\\volume\\>of\\>cylinder=(\u03c0\\left(x^{\\smash{2}}\\right))\\>(height\\>of\\>cylinder)\\\\h-y=height\\>of\\>cylinder\\\\y=height\\>between\\>height\\>of\\>cylinder\\>and\\>to\\>of\\>cone\\\\use\\>the\\>diagram\\>of\\>similar\\>triangles\\>at\\>right\\\\{y\\over\\>x}={h\\over\\>r}\\\\y=\\>{hx\\over\\>r}\\\\volume\\>of\\>cylinder=(\u03c0\\left(x^{\\smash{2}}\\right))(h-y)=\\>(\u03c0\\left(x^{\\smash{2}}\\right))(h-\\>hx\/r)=\\>(\u03c0\\left(x^{\\smash{2}}\\right)h-\u03c0\\left(x^{\\smash{3}}\\right)h\/r)\\>\\>-->eq(1)\\\\v\u2019(x)=2\u03c0xh-3\u03c0h\u03c0\\left(x^{\\smash{2}}\\right)\/r=\u03c0xh(2-3x\/r)\\\\so\\>x=0,\\>x=2r\/3\\\\v\u2019\u2019(x)=2\u03c0h-6\u03c0hx\/r\\\\if\\>x=2r\/3\\>\\>\\>\\>\\>\\>----->\\>second\\>derivative\\>test\\>gives\\>maximum\\>volume\\>\\\\v\u2019\u2019(2r\/3)=-2\u03c0<0----->eq(1)\\\\v(2r\/3)=\\>\u03c0(2r\/3)2h-\u03c0h\/r(2r\/3)3=\\>{4\u03c0\\left(r^{\\smash{2}}\\right)h\\>\\over\\>27}\\>\\\\Maximum\\>volume\\>of\\>cylinder\\>inscribed\\>in\\>a\\>cone\\>of\\>radius\\>r\\>and\\>height\\>h\\>=\\>{4\u03c0\\left(r^{\\smash{2}}\\right)h\\>\\over\\>27}\\>"
Comments
Leave a comment