Question #229535
3. Find the maximum volume of a right - circular cylinder that can be inscribed in a right-circular cone of
radius R = 3 and height H = 9.
1
Expert's answer
2021-09-13T16:44:13-0400

ArightcircularcylinderisinscribedinaconewithheighthandbaseradiusrFindthelargestvolumeofsuchacaseh=heightofconer=radiusofconevolumeofcylinderchangesasafunctionofcylindersradius,xvolumeofcylinder=(Areaofcylinder)(heightofcylinder)volumeofcylinder=(π(x2))(heightofcylinder)hy=heightofcylindery=heightbetweenheightofcylinderandtoofconeusethediagramofsimilartrianglesatrightyx=hry=hxrvolumeofcylinder=(π(x2))(hy)=(π(x2))(hhx/r)=(π(x2)hπ(x3)h/r)>eq(1)v(x)=2πxh3πhπ(x2)/r=πxh(23x/r)sox=0,x=2r/3v’’(x)=2πh6πhx/rifx=2r/3>secondderivativetestgivesmaximumvolumev’’(2r/3)=2π<0>eq(1)v(2r/3)=π(2r/3)2hπh/r(2r/3)3=4π(r2)h27Maximumvolumeofcylinderinscribedinaconeofradiusrandheighth=4π(r2)h27A\>right\>circular\>cylinder\>is\>inscribed\>in\>a\>cone\>with\>height\>h\>and\>base\>radius\>r\\Find\>the\>largest\>volume\>of\>such\>a\>case\>\\h=height\>of\>cone\\r=radius\>of\>cone\\volume\>of\>cylinder\>changes\>as\>a\>function\>of\>cylinder’s\>radius,\>x\>\\volume\>of\>cylinder\>=(Area\>of\>cylinder)(height\>of\>cylinder)\\volume\>of\>cylinder=(π\left(x^{\smash{2}}\right))\>(height\>of\>cylinder)\\h-y=height\>of\>cylinder\\y=height\>between\>height\>of\>cylinder\>and\>to\>of\>cone\\use\>the\>diagram\>of\>similar\>triangles\>at\>right\\{y\over\>x}={h\over\>r}\\y=\>{hx\over\>r}\\volume\>of\>cylinder=(π\left(x^{\smash{2}}\right))(h-y)=\>(π\left(x^{\smash{2}}\right))(h-\>hx/r)=\>(π\left(x^{\smash{2}}\right)h-π\left(x^{\smash{3}}\right)h/r)\>\>-->eq(1)\\v’(x)=2πxh-3πhπ\left(x^{\smash{2}}\right)/r=πxh(2-3x/r)\\so\>x=0,\>x=2r/3\\v’’(x)=2πh-6πhx/r\\if\>x=2r/3\>\>\>\>\>\>----->\>second\>derivative\>test\>gives\>maximum\>volume\>\\v’’(2r/3)=-2π<0----->eq(1)\\v(2r/3)=\>π(2r/3)2h-πh/r(2r/3)3=\>{4π\left(r^{\smash{2}}\right)h\>\over\>27}\>\\Maximum\>volume\>of\>cylinder\>inscribed\>in\>a\>cone\>of\>radius\>r\>and\>height\>h\>=\>{4π\left(r^{\smash{2}}\right)h\>\over\>27}\>


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS