Answer to Question #228939 in Calculus for fouzi

Question #228939

 Find the domain of r(t) and the value of r(t0).4. r(t) = 2e−t ,sin−1 t, ln(1 − t); t0 = 0


1
Expert's answer
2021-09-01T11:41:33-0400


Let us find the domain of r(t)r(t), where

r(t)=(2et,sin1t,ln(1t)).r(t) = (2e^{−t}, \sin^{−1} t, \ln(1 − t)).

Taking into account that the domain of the function 2et2e^{−t} is the set R\R of all real numbers, the domain of the function sin1t\sin^{−1} t is the set [1,1][-1,1] and the domain of the function ln(1t)\ln(1 − t) consists of all tRt\in\R such that 1t>0,1-t>0, that is t<1,t<1, we conclude that the domain of the vector-function r(t)r(t) is the set [1,1).[-1,1).

Let us find the value of r(t0)r(t_0) for t0=0:t_0=0:

r(t0)=r(0)=(2e0,sin10,ln(10))=(2,0,0).r(t_0)=r(0)=(2e^{0}, \sin^{−1} 0, \ln(1 − 0))=(2,0,0).


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment