Question #228475

A) solve the following initial value problem: dy/dx= cos^2 y/4x-3 ; y(1)=π/4.


B) let F(x,y)=y cos(x^2 y^2)+y, then


(i) find the first partial derivatives Fx and Fy.

(ii) using b(i) above, find dy/dx.

(iii) if F(x,y)=0,then find dy/dx using implicit differentiation to confirm your answer in part (b) (ii) above.


1
Expert's answer
2021-08-23T16:15:11-0400

A)

dydx=cos2y4x3\dfrac{dy}{dx}=\dfrac{\cos^2y}{4x-3}

dycos2y=dx4x3\dfrac{dy}{\cos^2y}=\dfrac{dx}{4x-3}

dycos2y=dx4x3\int\dfrac{dy}{\cos^2y}=\int\dfrac{dx}{4x-3}

tany=ln4x3+C\tan y=\ln|4x-3|+C

y(1)=π/4,tanπ4=ln4(1)3+C=>C=1y(1)=π/4, \tan \dfrac{\pi}{4}=\ln|4(1)-3|+C=>C=1

tany=ln4x3+1\tan y=\ln|4x-3|+1

B)


F(x,y)=ycos(x2y2)+yF(x,y)=y \cos(x^2 y^2)+y

(i)

Fx=2xy3sin(x2y2)F_x=-2xy^3\sin(x^2y^2)

Fy=cos(x2y2)2x2y2sin(x2y2)+1F_y=\cos(x^2 y^2)-2x^2y^2\sin(x^2y^2)+1

(ii)


dydx=FxFy=2xy3sin(x2y2)cos(x2y2)2x2y2sin(x2y2)+1\dfrac{dy}{dx}=-\dfrac{F_x}{F_y}=-\dfrac{-2xy^3\sin(x^2y^2)}{\cos(x^2 y^2)-2x^2y^2\sin(x^2y^2)+1}

=2xy3sin(x2y2)cos(x2y2)2x2y2sin(x2y2)+1=\dfrac{2xy^3\sin(x^2y^2)}{\cos(x^2 y^2)-2x^2y^2\sin(x^2y^2)+1}

(iii)


F(x,y)=0=>ycos(x2y2)+y=0F(x,y)=0=>y \cos(x^2 y^2)+y=0

Differentiate both sides with respect to xx and use the Chain Rule

dydxcos(x2y2)ysin(x2y2)(2xy2+2x2ydydx)+dydx=0\dfrac{dy}{dx}\cdot \cos(x^2 y^2)-y\sin(x^2y^2)(2xy^2+2x^2y\cdot\dfrac{dy}{dx})+\dfrac{dy}{dx}=0

Solve for dydx\dfrac{dy}{dx}


dydx=2xy3sin(x2y2)cos(x2y2)2x2y2sin(x2y2)+1\dfrac{dy}{dx}=\dfrac{2xy^3\sin(x^2y^2)}{\cos(x^2 y^2)-2x^2y^2\sin(x^2y^2)+1}

The answers are the same.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS