A) solve the following initial value problem: dy/dx= cos^2 y/4x-3 ; y(1)=π/4.
B) let F(x,y)=y cos(x^2 y^2)+y, then
(i) find the first partial derivatives Fx and Fy.
(ii) using b(i) above, find dy/dx.
(iii) if F(x,y)=0,then find dy/dx using implicit differentiation to confirm your answer in part (b) (ii) above.
A)
"\\dfrac{dy}{dx}=\\dfrac{\\cos^2y}{4x-3}""\\dfrac{dy}{\\cos^2y}=\\dfrac{dx}{4x-3}"
"\\int\\dfrac{dy}{\\cos^2y}=\\int\\dfrac{dx}{4x-3}"
"\\tan y=\\ln|4x-3|+C"
"y(1)=\u03c0\/4, \\tan \\dfrac{\\pi}{4}=\\ln|4(1)-3|+C=>C=1"
"\\tan y=\\ln|4x-3|+1"
B)
(i)
"F_x=-2xy^3\\sin(x^2y^2)""F_y=\\cos(x^2 y^2)-2x^2y^2\\sin(x^2y^2)+1"
(ii)
"=\\dfrac{2xy^3\\sin(x^2y^2)}{\\cos(x^2 y^2)-2x^2y^2\\sin(x^2y^2)+1}"
(iii)
Differentiate both sides with respect to "x" and use the Chain Rule
"\\dfrac{dy}{dx}\\cdot \\cos(x^2 y^2)-y\\sin(x^2y^2)(2xy^2+2x^2y\\cdot\\dfrac{dy}{dx})+\\dfrac{dy}{dx}=0"
Solve for "\\dfrac{dy}{dx}"
The answers are the same.
Comments
Leave a comment