Answer to Question #228911 in Calculus for fouzi

Question #228911

 Find the domain of r(t) and the value of r(t0).1, t 2; t0 = 1


1
Expert's answer
2021-09-01T09:21:04-0400
r(t)=t2,1t,1t\vec r(t)=\langle t^2,\dfrac{1}{t}, \sqrt{1-t}\rangle

t0,1t0t\not=0, 1-t\geq0

Domain:(,0)(0,1]Domain: (\infin, 0)\cup(0, 1]


t0=1t_0=1


r(t0)=r(1)=12,11,11\vec r(t_0)=\vec r(1)=\langle 1^2,\dfrac{1}{1}, \sqrt{1-1}\rangle

=1,1,0=\langle 1,1, 0\rangle

r(t0)=r(1)=i+j\vec r(t_0)=\vec r(1)=\vec i+\vec j


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment