A)Determine the following integrals:
(i) "\\int" (x-2/x^2)(X+2/x^2)dx
(ii) "\\int" e^5x(e^2x/7+3/e^3x)dx
(iii) "\\int" 1/(4-√3x)^3 dx
(iv) "\\int" π/40(tan x)^3(sec x)^3 dx
B)let f(x)=x^2-2 and g(x)=-|x|,then
(i) sketch the graphs of f and g on the same axes.
(ii) find the area enclosed by f(x)=x^2-2 and g(x)=-|x|.
"A\\\\\ni)\\\\\n\\int [x-\\frac{2}{x^2}][x+\\frac{2}{x^2}]dx\\\\\n=\\int [x^2-\\frac{4}{x^4}]dx\\\\\n= \\frac{x^3}{3}+\\frac{4}{3x^3}+c\\\\\n\n\nii)\\\\\n\\int e^{5x}[\\frac{e^{2x}}{7}+\\frac{3}{e^{3x}}]dx\\\\\n=\\int [\\frac{e^{7x}}{7}+3{e^{2x}}]dx\\\\\n=\\frac{e^{7x}}{49}+\\frac{3e^{2x}}{2}+c\\\\\n\n\n\niii)\\\\\n\n\\int \\frac{1}{(4-\\sqrt{3x})^3}dx\\\\\n\n\\text{put}\\\\\n\n4-\\sqrt{3x}=t\\\\\n\n=>\\frac{-3}{2\\sqrt{3x}}dx=dt\\\\\n\n\\implies dx=\\frac{-2}{3}(4-t)dt\\\\\n\n\\int \\frac{1}{(4-\\sqrt{3x})^3}dx\\\\\n\n=\\frac{-2}{3} \\int \\frac{4-t}{t^3}dt\\\\\n\n=\\frac{-2}{3} \\int (4t^{-3}-t^{-2})dt\\\\\n\n=\\frac{-2}{3}(\\frac{-2}{t^{2}}+\\frac{1}{3t^3})+c\\\\\n\n=\\frac{-2}{3}(\\frac{-2}{(4-\\sqrt{3x})\n\n^{2}}+\\frac{1}{3(4-\\sqrt{3x})^3})+c\\\\\n\n\niv)\\\\\n\\int^{\u03c0\/4}_{0 } (tan x)^3 (sec x )^3dx\\\\ \n\\text{put},\\\\\nsecx=t\\\\\n=>tanx \\space secx \\space\n dx=dt\\\\\n\\text{and using }tan^2x=1-sec^2x,\n\\text{we get}\\\\\n\\int^{\u03c0\/4}_{0 } (tan x)^3 (sec x )^3dx\\\\\n=\\int^{\u03c0\/4}_{0 } (secx)^2(tan x )^2tanx \\space secx\\space dx\\\\\n=\\int^{\u03c0\/4}_{0} (sec x )^2(1-sec^2x)tanx \\space secx\\space dx\\\\\n =\\int^{\\sqrt2}_1 t^2(1-t^2)dt\\\\\n=\\int^{\\sqrt2}_1 (t^2-t^4)dt\\\\\n=[\\frac{t^3}{3}-\\frac{t^5}{5}]^{\\sqrt2}_1\\\\\n=-0.32\\\\\n\n\n\n\nB\\\\\ni)"
blue curve denotes "f=x^2-2"
red curve denotes g=-|x|
(ii)
area of region I i.e., ABC,
"2\u00d7\\frac{1}{2}\u00d71\u00d71\\\\\n=1"
area of region II i.e., ADC,
"2\u00d7\\int_{-1}^1 -(x^2-2)dx\\\\\n=2\u00d7\\int_{-1}^1 (2-x^2)dx\\\\\n=2[2x-\\frac{x^3}{3}]_{-1}^1\\\\\n=2[2-\\frac{1}{3}+2-\\frac{1}{3}]\\\\\n=\\frac{20}{3}"
total area of the region bounded i.e., ABCD is 23/3.
Comments
Leave a comment