Calculate the volume created by revolution around the axes OX, of D of the plane (OXY) where D={(x,y) ∈R: 0 ≤ y ≤x, (x-2)2 +y2 ≤ 4}
So, we will have
∫02x2dx=x33∣02=83\int_0^2 x^2dx=\frac{x^3}{3}|_0^2=\frac{8}{3}∫02x2dx=3x3∣02=38
∫24(4−x2+4x−4)dx=∫24(−x2+4x)dx=(−x33+4x22)∣24=−643+2⋅16+83−2⋅4=−563+24\int_2^4 (4-x^2+4x-4)dx=\int_2^4 (-x^2+4x)dx=\newline (-\frac{x^3}{3}+4\frac{x^2}{2})|_2^4=-\frac{64}{3}+2\cdot 16+\frac{8}{3}-2\cdot 4=\newline -\frac{56}{3}+24∫24(4−x2+4x−4)dx=∫24(−x2+4x)dx=(−3x3+42x2)∣24=−364+2⋅16+38−2⋅4=−356+24
From here
Vx=(83−563+24)π=(24−483)π=(24−16)π=8πV_x=(\frac{8}{3}-\frac{56}{3}+24)\pi=(24-\frac{48}{3})\pi=(24-16)\pi=8\piVx=(38−356+24)π=(24−348)π=(24−16)π=8π sq.units.
Answer. 8π8\pi8π sq.units.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments