Evaluate the limit as x turns to 2+
lim {sin[In (x-1)] / √(x-2)}
"\\lim\\limits_{x\\rightarrow2^+} \\frac{sin(ln(x-1))}{\\sqrt{x-2}}\\\\\n=\\lim\\limits_{x\\rightarrow2^+} \\frac{sin(ln(x-1))}{(ln(x-1))} \\times \\frac{(ln(x-1))}{\\sqrt{x-2}}\\\\\n=\\lim\\limits_{x\\rightarrow2^+} \\frac{sin(ln(x-1))}{(ln(x-1))} \\times \\lim\\limits_{x\\rightarrow2^+}\\frac{(ln(x-1))}{\\sqrt{x-2}}\\\\\n=(1)\\times \\lim\\limits_{x\\rightarrow2^+}\\frac{(ln(x-1))}{\\sqrt{x-2}}\\\\"
Now, applying L'Hopital's rule, we get:
"\\lim\\limits_{x\\rightarrow2^+} \\frac{\\frac{1}{x-1}}{\\frac{1}{2\\sqrt{x-2}}}\\\\\n=\\lim\\limits_{x\\rightarrow2^+} \\frac{2\\sqrt{x-2}}{x-1}\\\\\n=\\frac{2(\\sqrt{2-2})}{2-1}\\\\\n=0"
Comments
Leave a comment