lim x → 2 + s i n ( l n ( x − 1 ) ) x − 2 = lim x → 2 + s i n ( l n ( x − 1 ) ) ( l n ( x − 1 ) ) × ( l n ( x − 1 ) ) x − 2 = lim x → 2 + s i n ( l n ( x − 1 ) ) ( l n ( x − 1 ) ) × lim x → 2 + ( l n ( x − 1 ) ) x − 2 = ( 1 ) × lim x → 2 + ( l n ( x − 1 ) ) x − 2 \lim\limits_{x\rightarrow2^+} \frac{sin(ln(x-1))}{\sqrt{x-2}}\\
=\lim\limits_{x\rightarrow2^+} \frac{sin(ln(x-1))}{(ln(x-1))} \times \frac{(ln(x-1))}{\sqrt{x-2}}\\
=\lim\limits_{x\rightarrow2^+} \frac{sin(ln(x-1))}{(ln(x-1))} \times \lim\limits_{x\rightarrow2^+}\frac{(ln(x-1))}{\sqrt{x-2}}\\
=(1)\times \lim\limits_{x\rightarrow2^+}\frac{(ln(x-1))}{\sqrt{x-2}}\\ x → 2 + lim x − 2 s in ( l n ( x − 1 )) = x → 2 + lim ( l n ( x − 1 )) s in ( l n ( x − 1 )) × x − 2 ( l n ( x − 1 )) = x → 2 + lim ( l n ( x − 1 )) s in ( l n ( x − 1 )) × x → 2 + lim x − 2 ( l n ( x − 1 )) = ( 1 ) × x → 2 + lim x − 2 ( l n ( x − 1 ))
Now, applying L'Hopital's rule, we get:
lim x → 2 + 1 x − 1 1 2 x − 2 = lim x → 2 + 2 x − 2 x − 1 = 2 ( 2 − 2 ) 2 − 1 = 0 \lim\limits_{x\rightarrow2^+} \frac{\frac{1}{x-1}}{\frac{1}{2\sqrt{x-2}}}\\
=\lim\limits_{x\rightarrow2^+} \frac{2\sqrt{x-2}}{x-1}\\
=\frac{2(\sqrt{2-2})}{2-1}\\
=0 x → 2 + lim 2 x − 2 1 x − 1 1 = x → 2 + lim x − 1 2 x − 2 = 2 − 1 2 ( 2 − 2 ) = 0
Comments