Question #223282

Evaluate the limit as x turns to 2+

lim {sin[In (x-1)] / √(x-2)}


1
Expert's answer
2021-10-25T16:44:56-0400

limx2+sin(ln(x1))x2=limx2+sin(ln(x1))(ln(x1))×(ln(x1))x2=limx2+sin(ln(x1))(ln(x1))×limx2+(ln(x1))x2=(1)×limx2+(ln(x1))x2\lim\limits_{x\rightarrow2^+} \frac{sin(ln(x-1))}{\sqrt{x-2}}\\ =\lim\limits_{x\rightarrow2^+} \frac{sin(ln(x-1))}{(ln(x-1))} \times \frac{(ln(x-1))}{\sqrt{x-2}}\\ =\lim\limits_{x\rightarrow2^+} \frac{sin(ln(x-1))}{(ln(x-1))} \times \lim\limits_{x\rightarrow2^+}\frac{(ln(x-1))}{\sqrt{x-2}}\\ =(1)\times \lim\limits_{x\rightarrow2^+}\frac{(ln(x-1))}{\sqrt{x-2}}\\

Now, applying L'Hopital's rule, we get:

limx2+1x112x2=limx2+2x2x1=2(22)21=0\lim\limits_{x\rightarrow2^+} \frac{\frac{1}{x-1}}{\frac{1}{2\sqrt{x-2}}}\\ =\lim\limits_{x\rightarrow2^+} \frac{2\sqrt{x-2}}{x-1}\\ =\frac{2(\sqrt{2-2})}{2-1}\\ =0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS