Evaluate the limit as x turns to 2+
lim {sin[In (x-1)] / √(x-2)}
limx→2+sin(ln(x−1))x−2=limx→2+sin(ln(x−1))(ln(x−1))×(ln(x−1))x−2=limx→2+sin(ln(x−1))(ln(x−1))×limx→2+(ln(x−1))x−2=(1)×limx→2+(ln(x−1))x−2\lim\limits_{x\rightarrow2^+} \frac{sin(ln(x-1))}{\sqrt{x-2}}\\ =\lim\limits_{x\rightarrow2^+} \frac{sin(ln(x-1))}{(ln(x-1))} \times \frac{(ln(x-1))}{\sqrt{x-2}}\\ =\lim\limits_{x\rightarrow2^+} \frac{sin(ln(x-1))}{(ln(x-1))} \times \lim\limits_{x\rightarrow2^+}\frac{(ln(x-1))}{\sqrt{x-2}}\\ =(1)\times \lim\limits_{x\rightarrow2^+}\frac{(ln(x-1))}{\sqrt{x-2}}\\x→2+limx−2sin(ln(x−1))=x→2+lim(ln(x−1))sin(ln(x−1))×x−2(ln(x−1))=x→2+lim(ln(x−1))sin(ln(x−1))×x→2+limx−2(ln(x−1))=(1)×x→2+limx−2(ln(x−1))
Now, applying L'Hopital's rule, we get:
limx→2+1x−112x−2=limx→2+2x−2x−1=2(2−2)2−1=0\lim\limits_{x\rightarrow2^+} \frac{\frac{1}{x-1}}{\frac{1}{2\sqrt{x-2}}}\\ =\lim\limits_{x\rightarrow2^+} \frac{2\sqrt{x-2}}{x-1}\\ =\frac{2(\sqrt{2-2})}{2-1}\\ =0x→2+lim2x−21x−11=x→2+limx−12x−2=2−12(2−2)=0
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments