Evaluate ∫0π √(1+cos8xdx)
Silution;
Substitute;
"u=8x"
So that ;
"\\frac{du}{dx}=8"
"dx=\\frac 18du"
Substitute the values back to the equation;
"\\frac18\\int_{0}^{8\u03c0}\\sqrt{1+cos(u)}du"
Apply the half angle identity;
cos(u)+1=2cos2("\\frac u2" )
By substitution;
"\\frac18\\int_0^{8\u03c0}\\sqrt2\\sqrt{cos^2(\\frac u2)}"
Simplify as;
"\\frac 18\\int_{0}^{8\u03c0}\\sqrt{2}cos(\\frac u2)du"
Take;
"v=\\frac u2" ;"\\frac{dv}{du}=\\frac12" ;"du=2dv"
By substitution;
"\\frac{\\sqrt{2}}{4}\\int_{0}^{4\u03c0}cos(v)dv"
Integrate;
"[\\frac{\\sqrt2}{4}sin(v)]_{0}^{4\u03c0}"
But "v=\\frac u2" ,also "u=8x" ,hence "v=4x"
Replace back the value of v;
"[\\frac{\\sqrt2}{4}sin(4x)]_{0}^{4\u03c0}"
"\\frac{\\sqrt2}{4}[sin(4\u03c0)-sin(0)]" "=0"
Comments
Leave a comment