Silution;
Substitute;
u = 8 x u=8x u = 8 x
So that ;
d u d x = 8 \frac{du}{dx}=8 d x d u = 8
d x = 1 8 d u dx=\frac 18du d x = 8 1 d u
Substitute the values back to the equation;
1 8 ∫ 0 8 π 1 + c o s ( u ) d u \frac18\int_{0}^{8π}\sqrt{1+cos(u)}du 8 1 ∫ 0 8 π 1 + cos ( u ) d u
Apply the half angle identity;
cos(u)+1=2cos2 (u 2 \frac u2 2 u )
By substitution;
1 8 ∫ 0 8 π 2 c o s 2 ( u 2 ) \frac18\int_0^{8π}\sqrt2\sqrt{cos^2(\frac u2)} 8 1 ∫ 0 8 π 2 co s 2 ( 2 u )
Simplify as;
1 8 ∫ 0 8 π 2 c o s ( u 2 ) d u \frac 18\int_{0}^{8π}\sqrt{2}cos(\frac u2)du 8 1 ∫ 0 8 π 2 cos ( 2 u ) d u
Take;
v = u 2 v=\frac u2 v = 2 u ;d v d u = 1 2 \frac{dv}{du}=\frac12 d u d v = 2 1 ;d u = 2 d v du=2dv d u = 2 d v
By substitution;
2 4 ∫ 0 4 π c o s ( v ) d v \frac{\sqrt{2}}{4}\int_{0}^{4π}cos(v)dv 4 2 ∫ 0 4 π cos ( v ) d v
Integrate;
[ 2 4 s i n ( v ) ] 0 4 π [\frac{\sqrt2}{4}sin(v)]_{0}^{4π} [ 4 2 s in ( v ) ] 0 4 π
But v = u 2 v=\frac u2 v = 2 u ,also u = 8 x u=8x u = 8 x ,hence v = 4 x v=4x v = 4 x
Replace back the value of v;
[ 2 4 s i n ( 4 x ) ] 0 4 π [\frac{\sqrt2}{4}sin(4x)]_{0}^{4π} [ 4 2 s in ( 4 x ) ] 0 4 π
2 4 [ s i n ( 4 π ) − s i n ( 0 ) ] \frac{\sqrt2}{4}[sin(4π)-sin(0)] 4 2 [ s in ( 4 π ) − s in ( 0 )] = 0 =0 = 0
Comments