The volume of the solid bounded by y = x 2 + 2 a n d y = 3 x + 2 y = x^2 + 2 \space and \space y = 3x + 2 y = x 2 + 2 an d y = 3 x + 2 about x-axis
x 2 + 2 = 3 x + 2 x 2 − 3 x = 0 x = 0 , 3 V o l u m e = ∫ 0 3 π [ ( 3 x + 2 ) 2 − ( x 2 + 2 ) 2 ] d x x^2 + 2 = 3x + 2 \\
x^2-3x=0\\
x=0,3\\
Volume = \int_0^3 \pi [(3x+2)^2-(x^2+2)^2]dx\\ x 2 + 2 = 3 x + 2 x 2 − 3 x = 0 x = 0 , 3 V o l u m e = ∫ 0 3 π [( 3 x + 2 ) 2 − ( x 2 + 2 ) 2 ] d x
The volume of the solid bounded by y = x 2 + 2 a n d y = 3 x + 2 y = x^2 + 2 \space and \space y = 3x + 2 y = x 2 + 2 an d y = 3 x + 2 about x=3
x 2 + 2 = 3 x + 2 x 2 − 3 x = 0 x = 0 , 3 x = 0 ⟹ y = 2 x = 3 ⟹ y = 11 V o l u m e = π ∫ 2 11 π [ ( R ( x ) ) 2 − ( r ( x ) ) 2 ] d x y = 3 x + 2 ⟹ x = y − 2 3 y = x 2 + 2 ⟹ x = y − 2 R ( x ) = 3 − ( y − 2 3 ) r ( x ) = 3 − y − 2 V o l u m e = π ∫ 2 11 π [ ( 3 − ( y − 2 3 ) ) 2 − ( 3 − y − 2 ) 2 ] d x x^2 + 2 = 3x + 2 \\
x^2-3x=0\\
x=0,3\\
x= 0\implies y= 2\\
x= 3 \implies y= 11\\
Volume = \pi \int_2^{11} \pi [(R(x))^2-(r(x))^2]dx\\
y= 3x+2 \implies x= \frac{y-2}{3}\\
y=x^2+2 \implies x= \sqrt{y-2}\\
R(x) = 3- (\frac{y-2}{3})\\
r(x)= 3-\sqrt{y-2}\\
Volume = \pi \int_2^{11} \pi [(3- (\frac{y-2}{3}))^2-(3-\sqrt{y-2})^2]dx\\ x 2 + 2 = 3 x + 2 x 2 − 3 x = 0 x = 0 , 3 x = 0 ⟹ y = 2 x = 3 ⟹ y = 11 V o l u m e = π ∫ 2 11 π [( R ( x ) ) 2 − ( r ( x ) ) 2 ] d x y = 3 x + 2 ⟹ x = 3 y − 2 y = x 2 + 2 ⟹ x = y − 2 R ( x ) = 3 − ( 3 y − 2 ) r ( x ) = 3 − y − 2 V o l u m e = π ∫ 2 11 π [( 3 − ( 3 y − 2 ) ) 2 − ( 3 − y − 2 ) 2 ] d x
Comments