z=1−x;z=2−y21−x=2−y22−2x=2−yy=2xz=0 ⟹ y=2Volume=∫∫D∫z=02−y2dzdA=∫∫D2−y2dA=∫01∫2x22−y2dydx=x2−2x+1=∫01(x2−2x+1)dx=∫01x2−∫012x+∫011dx=13z= 1-x; z= \frac{2-y}{2}\\ 1-x = \frac{2-y}{2}\\ 2-2x=2-y\\ y=2x\\ z= 0 \implies y= 2\\ Volume = \int\int_D\int _{z=0}^{\frac{2-y}{2}}dzdA = \int\int_D \frac{2-y}{2}dA\\ =\int_0^1 \int_{2x}^{2} \frac{2-y}{2}dydx\\ =x^2-2x+1\\ =\int _0^1\left(x^2-2x+1\right)dx\\ =\int _0^1x^2- \int _0^12x+\int _0^11dx\\ =\frac{1}{3}z=1−x;z=22−y1−x=22−y2−2x=2−yy=2xz=0⟹y=2Volume=∫∫D∫z=022−ydzdA=∫∫D22−ydA=∫01∫2x222−ydydx=x2−2x+1=∫01(x2−2x+1)dx=∫01x2−∫012x+∫011dx=31
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments