Answer:-
Part a
z = x 2 + y 2 1 ≤ z ≤ 3 1 ≤ x 2 + y 2 ≤ 3 1 2 ≤ x 2 + y 2 ≤ ( 3 ) 2 z=x^2+y^2\\
1≤z≤3\\
1≤x^2+y^2≤3\\
1^2≤x^2+y^2≤(\sqrt3)^2\\ z = x 2 + y 2 1 ≤ z ≤ 3 1 ≤ x 2 + y 2 ≤ 3 1 2 ≤ x 2 + y 2 ≤ ( 3 ) 2
The XY-projection the sketch is the shaded region
Part b
z = x 2 + y 2 z x = 2 x z y = 2 y z=x^2+y^2\\
zx=2x\\
zy=2y\\ z = x 2 + y 2 z x = 2 x zy = 2 y
Change in polar coordinate
x = r c o s θ ; y = r s i n θ x 2 + y 2 = r 2 ; d A = r d r d θ 1 < r < 3 ; 0 < θ < 2 π 1 + z x 2 + z y 2 = 1 + 4 x 2 + 4 y 2 = 1 + 4 r 2 x=r cos \theta; y=r sin \theta\\
x^2+y^2=r^2; dA=rdrd \theta\\
1<r< \sqrt{3}; 0< \theta < 2\pi\\
\sqrt{1+zx^2+zy^2}= \sqrt{1+4x^2+4y^2}= \sqrt{1+4r^2} x = rcos θ ; y = rs in θ x 2 + y 2 = r 2 ; d A = r d r d θ 1 < r < 3 ; 0 < θ < 2 π 1 + z x 2 + z y 2 = 1 + 4 x 2 + 4 y 2 = 1 + 4 r 2
Surface area
= ∫ ∫ R 1 + z x 2 + z y 2 = ∫ 0 2 π ∫ 1 3 1 + 4 r 2 r d r d θ = ∫ 0 2 π d θ ∫ 1 3 1 + 4 r 2 r d r L e t 1 + 4 r 2 = t 2 = ( 2 π − 0 ) ∫ 5 3 t ∗ t d t 4 = 2 π 4 [ t 3 3 ] 5 3 = π 6 [ 13 13 − 5 5 ] =\int \int _R \sqrt{1+zx^2+zy^2}\\
=\int_0^{2 \pi} \int_1^{\sqrt{3}} \sqrt{1+4r^2} rdrd \theta\\
=\int_0^{2 \pi} d \theta \int_1^{\sqrt{3}} \sqrt{1+4r^2} rdr\\
Let \space 1+4r^2 = t^2\\
=(2 \pi -0) \int _{\sqrt{5}}^{\sqrt{3}} t * \frac{t dt}{4} \\
= \frac{2 \pi}{4}[\frac{t^3}{3}]_{\sqrt5}^{\sqrt3}\\
=\frac{\pi}{6}[13 \sqrt{13}-5 \sqrt5] = ∫ ∫ R 1 + z x 2 + z y 2 = ∫ 0 2 π ∫ 1 3 1 + 4 r 2 r d r d θ = ∫ 0 2 π d θ ∫ 1 3 1 + 4 r 2 r d r L e t 1 + 4 r 2 = t 2 = ( 2 π − 0 ) ∫ 5 3 t ∗ 4 t d t = 4 2 π [ 3 t 3 ] 5 3 = 6 π [ 13 13 − 5 5 ]
The surface S in R3
Comments