An curve has equation y =12/3 -2x
Find dy/dx
y=123−2xy = \dfrac{12}{3-2x}y=3−2x12
u=12du/dx=0v=3−2xdv/dx=−2u = 12 \\ du/dx= 0 \\ v = 3- 2x \\ dv /dx = -2u=12du/dx=0v=3−2xdv/dx=−2
from, dydx=Vdudx−UdvdxV²\dfrac{dy}{dx}=\dfrac{V\dfrac{du}{dx}- U\dfrac{dv}{dx} }{V²}dxdy=V²Vdxdu−Udxdv
dydx=(3−2x)(0)−12(−2)(3−2x)²\dfrac{dy}{dx} =\dfrac{(3-2x)(0)- 12(-2) }{(3-2x)²}dxdy=(3−2x)²(3−2x)(0)−12(−2)
dydx=24(3−2x)²\dfrac{dy}{dx} =\dfrac{24}{(3-2x)²}dxdy=(3−2x)²24
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment