Question #221099

Consider the surface S =  (x, y, z) ∈ R 3 | z = 3 − x 2 − y 2 ; z ≥ 2 . Assume that S is oriented upward and let C be the oriented boundary of S. (a) Sketch the surface S in R 3 . Also show the oriented curve C and the XY-projection of the surface S on your sketch. (2) (b) Let F (x, y, z) = (2y, 3z, 4y). Evaluate the flux integral Z Z S (curl F) · n dS by i. determining curl F and the upward unit normal n of S and using the formula (17.2) on p. 104 of Guide 3 (5) ii. Using Stokes’ Theorem, convert the given flux integral to a line integral. 


1
Expert's answer
2021-10-28T07:11:35-0400

Answer:-

z=3x2y2,x2z=3-x^2-y^2,x\ge2


a)

curve C: x2+y2=1x^2+y^2=1




b)

S=ScurlFdS=ScurlFndS\iint_S=\iint_S curl\vec{F}\cdot d\vec{S}=\iint_S curl\vec{F}\cdot\vec{n}dS


curlF=(RyQz)i+(PzRx)j+(QxPy)k=i2kcurl\vec{F}=(R_y-Q_z)i+(P_z-R_x)j+(Q_x-P_y)k=i-2k


n=ff\vec{n}=\frac{-\nabla f}{||-\nabla f||}


f(x,y,x)=z+x2+y23f(x,y,x)=z+x^2+y^2-3

f=(2x,2y,1)\nabla f=(2x,2y,1)


ScurlFdS=D(1,0,2)(2x,2y,1)dA=D(22x)dA\iint_S curl\vec{F}\cdot d\vec{S}=\iint_D(1,0,-2)(-2x,-2y,-1)dA=\iint_D(2-2x)dA

x=rcosθ,y=rsinθx=rcos\theta,y=rsin\theta

0θ2π,0r10\le \theta\le 2\pi,0\le r\le 1


ScurlFdS=02π01(22rcosθ)rdrdθ=\iint_S curl\vec{F}\cdot d\vec{S}=\intop^{2\pi}_0\int^1_0(2-2rcos\theta)r drd\theta=


=02π(12cosθ/3)dθ=(θ23sinθ)02π=2π=\intop^{2\pi}_0(1-2cos\theta/3) d\theta=(\theta-\frac{2}{3}sin\theta)|^{2\pi}_0=2\pi


Stokes’ Theorem:

CFdr=ScurlFdS\int_C \vec{F}\cdot d\vec{r}=\iint_S curl\vec{F}\cdot d\vec{S}


r(t)=(cost,sint,2),0t2π\vec{r}(t)=(cost,sint,2),0\le t\le 2\pi


CFdr=02πF(r(t))r(t)dt\int_C \vec{F}d\vec{r}=\int^{2\pi}_0\vec{F}(\vec r(t))\cdot \vec{r}'(t)dt


F(r(t))=(2sint,6,4sint)\vec{F}(\vec r(t))=(2sint,6,4sint)

r(t)=(sint,cost,0)\vec{r}'(t)=(-sint,cost,0)


ScurlFdS==02π(2sin2t+6cost)dt=(sin2x2x2+6sint)02π=2π\iint_S curl\vec{F}\cdot d\vec{S}==\int^{2\pi}_0(-2sin^2t+6cost)dt=(-\frac{sin2x-2x}{2}+6sint)|^{2\pi}_0=2\pi


XY-projection of the surface:

x2+y2=1x^2+y^2=1




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS