Region projection onto the Oxy plane:
Then
V=∫∫Dz(x,y)dxdy=∫01dx∫−11y2dy=13∫01y3∣−11dx=13∫01(1+1)dx=23x∣01=23V = \int {\int\limits_D {z(x,y)dxdy} = \int\limits_0^1 {dx} \int\limits_{ - 1}^1 {{y^2}} } dy = \frac{1}{3}\int\limits_0^1 {\left. {{y^3}} \right|_{ - 1}^1dx} = \frac{1}{3}\int\limits_0^1 {(1 + 1)dx = } \frac{2}{3}\left. x \right|_0^1 = \frac{2}{3}V=∫D∫z(x,y)dxdy=0∫1dx−1∫1y2dy=310∫1y3∣∣−11dx=310∫1(1+1)dx=32x∣01=32
Answer: V=23V=\frac{2}{3}V=32
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment