In general,
the Taylor polynomial of order n for f(x) centered at x=a is given by
Tn(x)=f(a)+f′(a)(x−a)+2f′′(a)(x−a)2+6f′′′(a)(x−a)3...+(n−1)!f(n−1)(a)(x−a)n−1+n!f(n)(a)(x−a)n
Therefore,
Find the respective derivatives of f(x)
f(x)=ex2 ;f(0)=1
f'(x)=2xex2 ;f'(0)=0
f''(x)=(4x2+2)ex2 ;f''(0)=2
f'''(x)=(8x3+12x)ex2 ;f'''(0)=0
f''''(x)=(16x4+48x2+12)ex2 ;f''''(0)=12
Hence,
T4(x)=1+0+x2+0+21x4
T4(x)=1+x2+21x4
Comments