Question #221523

Find the Taylor polynomial of order 4 (at x = 0) for the function : f(x) = ex^2



1
Expert's answer
2021-07-30T14:35:14-0400


In general,

the Taylor polynomial of order n for f(x) centered at x=a is given by

Tn(x)=f(a)+f(a)(xa)+f(a)2(xa)2+f(a)6(xa)3...+f(n1)(a)(n1)!(xa)n1+f(n)(a)n!(xa)nT_n(x)=f(a)+f'(a)(x-a)+\frac{f''(a)}{2}(x-a)^2+\frac{f'''(a)}{6}(x-a)^3...+\frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1}+\frac{f^{(n)}(a)}{n!}(x-a)^n

Therefore,

Find the respective derivatives of f(x)

f(x)=ex2e^{x^2} ;f(0)=1

f'(x)=2xex22xe^{x^2} ;f'(0)=0

f''(x)=(4x2+2)ex2(4x^2+2)e^{x^2} ;f''(0)=2

f'''(x)=(8x3+12x)ex2(8x^3+12x)e^{x^2} ;f'''(0)=0

f''''(x)=(16x4+48x2+12)ex2(16x^4+48x^2+12)e^{x^2} ;f''''(0)=12

Hence,

T4(x)=1+0+x2+0+12x41+0+x^2+0+\frac12x^4

T4(x)=1+x2+12x4T_4(x)=1+x^2+\frac12x^4










Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS