A piece of wire 20 m long is cut into two pieces. One piece is bent into a square and the
other is bent into an equilateral triangle. How should the wire be cut so that the total area
enclosed is:
(a) maximum? (b) minimum?
Let x metres be the side of the square, so 4x metres are the total amount of wire used for the square (with "0\n\u2264\n4\nx\n\u2264\n20\n\u21d2\n0\n\u2264\nx\n\u2264\n5\n )" For the equilateral triangle 20−4x metres of wire remains, and the side will be "\\frac{20\n\u2212\n4\nx}{\n3}"
Given the side l of an equilateral triangle, the height is, using Pitagora's theorem, "h\n=\n\\frac{l}{\n2}\n\\sqrt\n3" so the area of the triangle is:
"A\n=\nl\n\u22c5\n\\frac{l}{\n2}\n\\sqrt\n3\n\u22c5\n\\frac1\n2\n=\nl^\n2\n\\frac{ \n{\\sqrt3}}{4}"
"(\nA\n=\n\\frac{b\n\u22c5\nh}\n2\n)"
So the total area is:
"A=x^2+(\\frac{20-4x}{3})^2 \\frac{\\sqrt{3}}{4}\\\\\nA'= 2x+ \\frac{\\sqrt{3}}{4}*\\frac{1}{9}*20(20-4x)*(-4)\\\\\nA'=2x-2\\frac{\\sqrt{3}}{9}(20-4x)\\\\\nA' > 0 \\space if\\\\\n2x-2\\frac{\\sqrt{3}}{9}(20-4x) > 0 \\implies 18x-40\\sqrt{3}+8\\sqrt{3}>0 \\\\\nx> \\frac{20*3(3\\sqrt{3}-4)}{81-48}\\\\\nx> \\frac{20}{11}(3\\sqrt{3}-4)= \\bar{x}\\\\"
So our function Area is decreasing in "[\n0\n,\n\\bar{x}\n)" and growing in "(\n\\bar{x}, 5]" and so the point "(\n\\bar{\nx}\n,\nA\n(\n\\bar{x}\n)\n)" is a minimum of the function. The conclusion is that maximum (absolute maximum) is in one of the two sides of the interval of the definition of x, 0 or 5.
If "x\n\n=\n\n0" the value of area will be: "A\n\n=\n\n100\n\n\\frac{\u221a\n\n3}{\n\n9}\n\n\u2245\n\n19\n\n.\n\n2"
If "x\n\n=\n\n5" Â the value of the area will be:Â "A\n\n=\n\n25" , that is greater than the other value.
Therefore
a. Minimum = 19.2
b. Maximum = 25
Comments
Leave a comment