Taylor series is given as
f ( a + h ) = f ( a ) + h . f ′ ( a ) + h 2 2 ! f ′ ′ ( a ) + h 3 3 ! f ′ ′ ′ ( a ) + . . . f(a+h)=f(a)+h.f'(a)+{h^2\over 2!}f''(a)+{h^3\over 3!}f'''(a)+... f ( a + h ) = f ( a ) + h . f ′ ( a ) + 2 ! h 2 f ′′ ( a ) + 3 ! h 3 f ′′′ ( a ) + ...
Let's Rewrite 26 26 26 in the following form:
26 = 25 + 1 26=25+1 26 = 25 + 1 Since we know square root of 25 25 25
Now, let's have a function that will enable us use Taylor series method
f ( 26 ) = f ( 25 + 1 ) f(26)=f(25+1) f ( 26 ) = f ( 25 + 1 )
⟹ \implies ⟹ a = 25 a=25 a = 25 and h = 1 h=1 h = 1
Since we are asked to find the square root
⟹ f ( a ) = a 1 2 ⟹ f ( a + 1 ) = 26 \implies f(a)=a^{1\over 2} \implies f(a+1)=\sqrt {26} ⟹ f ( a ) = a 2 1 ⟹ f ( a + 1 ) = 26
Substituting the value of a a a we have
f ( a ) = 2 5 1 2 = 5 f(a)=25^{1\over 2} =5 f ( a ) = 2 5 2 1 = 5
f ′ ( a ) = 1 2 a 1 2 − 1 = 1 2 a − 1 2 = 1 2 a 1 2 = 1 2 a 1 2 f'(a)={1\over 2}a^{{1\over 2}-1}={1\over 2}a^{-{1\over 2}}={{1\over 2}\over a^{1\over2}}={1\over 2a^{1\over 2}} f ′ ( a ) = 2 1 a 2 1 − 1 = 2 1 a − 2 1 = a 2 1 2 1 = 2 a 2 1 1
Substituting the value of a a a we have
f ′ ( a ) = 1 2 ( 25 ) 1 2 = 0.1 f'(a)={1\over 2(25)^{1\over 2}}=0.1 f ′ ( a ) = 2 ( 25 ) 2 1 1 = 0.1
f ′ ′ ( a ) = ( − 1 2 ) ( 1 2 ) a − 1 2 − 1 = − 1 4 a − 3 2 = − 1 4 a 3 2 = − 1 4 a 3 2 f''(a)=(-{1\over 2})({1\over 2})a^{-{1\over 2}-1}=-{1\over 4}a^{-{3\over 2}}={-{1\over 4}\over a^{3\over 2}}=-{1\over 4a^{3\over 2}} f ′′ ( a ) = ( − 2 1 ) ( 2 1 ) a − 2 1 − 1 = − 4 1 a − 2 3 = a 2 3 − 4 1 = − 4 a 2 3 1
Substituting the value of a a a we have
f ′ ′ ( a ) = − 1 4 ( 25 ) 3 2 = − 0.002 f''(a)=-{1\over 4(25)^{3\over 2}}=-0.002 f ′′ ( a ) = − 4 ( 25 ) 2 3 1 = − 0.002
f ′ ′ ′ ( a ) = ( − 3 2 ) ( − 1 4 ) a − 3 2 − 1 = 3 8 a − 5 2 = 3 8 a 5 2 = 3 8 a 5 2 f'''(a)=({-{3\over 2}})({-{1\over 4}})a^{-{3\over 2}-1}={3\over 8}a^{-{5\over 2}}={{3\over 8}\over a^{5\over 2}}={3\over 8a^{5\over 2}} f ′′′ ( a ) = ( − 2 3 ) ( − 4 1 ) a − 2 3 − 1 = 8 3 a − 2 5 = a 2 5 8 3 = 8 a 2 5 3
Substituting the value of a a a we have
f ′ ′ ′ ( a ) = 3 8 ( 25 ) 5 2 = 0.00012 f'''(a)={3\over 8(25)^{5\over 2}}=0.00012 f ′′′ ( a ) = 8 ( 25 ) 2 5 3 = 0.00012
From Taylor series method, we have
26 = f ( a + 1 ) = f ( a ) + 1. f ′ ( a ) + 1 2 2 ! f ′ ′ ( a ) + 1 3 3 ! f ′ ′ ′ ( a ) + . . . \sqrt {26}=f(a+1)=f(a)+1.f'(a)+{1^2\over 2!}f''(a)+{1^3\over 3!}f'''(a)+... 26 = f ( a + 1 ) = f ( a ) + 1. f ′ ( a ) + 2 ! 1 2 f ′′ ( a ) + 3 ! 1 3 f ′′′ ( a ) + ...
⟹ 26 = f ( a + 1 ) = f ( a ) + f ′ ( a ) + f ′ ′ ( a ) 2 + f ′ ′ ′ ( a ) 3 ! + . . . \implies \sqrt {26}= f(a+1)=f(a)+f'(a)+{f''(a)\over 2}+{f'''(a)\over 3!}+... ⟹ 26 = f ( a + 1 ) = f ( a ) + f ′ ( a ) + 2 f ′′ ( a ) + 3 ! f ′′′ ( a ) + ...
But
f ( a ) = 5 f(a)=5 f ( a ) = 5 , f ′ ( a ) = 0.1 f'(a)=0.1 f ′ ( a ) = 0.1 , f ′ ′ ( a ) = − 0.002 f''(a)=-0.002 f ′′ ( a ) = − 0.002 , f ′ ′ ′ ( a ) = 0.00012 f'''(a)=0.00012 f ′′′ ( a ) = 0.00012
⟹ 26 = f ( a + 1 ) = 5 + 0.1 + ( − 0.002 ) 2 + 0.00012 3 ! = 5.09902 \implies \sqrt {26}= f(a+1)=5+0.1+{(-0.002)\over 2}+{0.00012\over 3!}=5.09902 ⟹ 26 = f ( a + 1 ) = 5 + 0.1 + 2 ( − 0.002 ) + 3 ! 0.00012 = 5.09902
∴ \therefore ∴ 26 = 5.0990 \sqrt{26}=5.0990 26 = 5.0990 correct to four decimal places
Comments