find workdone integral of F
d
~
r
where
~
F
(
x
,
y
,
z
)
=
e
2
x
~
i
+
z
(
y
+
1
)
~
j
+
z
3
~
k
along the curve
C
~
r
(
t
)
=
t
3
~
i
+
(
1
−
3
t
)
~
j
+
e
t
~
k
for 0
≤
t
≤
2
"C:\\vec r(t)=t^3\\vec i+(1-t)\\vec j+e^t\\vec k, 0\\leq t\\leq 2"
"\\vec {r'}(t)=3t^2\\vec i-\\vec j+e^t\\vec k"
"\\vec F(\\vec r(t))=e^{2t^3}\\vec i+e^t(1-t+1)\\vec j+e^{3t}\\vec k"
"\\vec F(\\vec r(t))\\cdot\\vec {r'}(t)=3t^2e^{2t^3}+e^t(t-2)+e^{4t}"
"=\\bigg[\\dfrac{1}{2}e^{2t^3}+(t-3)e^t+\\dfrac{1}{4}e^{4t}\\bigg]\\begin{matrix}\n 2 \\\\\n 0\n\\end{matrix}"
"=\\dfrac{1}{2}e^{16}-e^2+\\dfrac{1}{4}e^{8}-(\\dfrac{1}{2}-3+\\dfrac{1}{4})"
"=\\dfrac{1}{2}e^{16}-e^2+\\dfrac{1}{4}e^{8}+\\dfrac{9}{4}"
Comments
Leave a comment