Answer to Question #220074 in Calculus for Nick

Question #220074

4.Expand log (cosx) about the point.


1
Expert's answer
2021-07-26T08:50:11-0400

The given function is f(x)=log(cosx)f(x)=log(cosx). We have to find the Taylor's series expansion of the given function up to the fourth degree term. So, we will compute up to the fourth derivative of the given function.

The value of the function at x=π3x=\frac{π}3 is 

f(π3)=log(cosπ3)=log(12)f(\frac{π} 3 )=log(cos\frac{π} 3 )=log(\frac{1} 2)


The first derivative of f(x)f(x) is f(x)=1cosx×sinxf'(x)=\frac{1}{cosx}×−sinx

The value of the first derivative at x=3π​ is

f(π3)=1cosπ3×sinπ3=112×32=3f'(\frac{π}{3})=\frac{1}{cos\frac{π}{3}}×−sin\frac{π}{3}=\frac{1}{\frac{1}{2}}×-\frac{\sqrt{3}}{2}=\sqrt{3}


The second derivative of f(x)f(x) is f(x)=sec2x.f''(x) =-sec^2x.

The value of the second derivative at x=π3x=\frac{π}{3} is

f(π3)=sec2π3=1cos2π3×=1(12)2=4f''(\frac{π}{3})=-sec^2\frac{π}{3}=-\frac{1}{cos^2\frac{π}{3}}×=-\frac{1}{(\frac{1}{2})^2}={4}


The third derivative of f(x)f(x) is f(3)(x)=2sec2xtan2xf^{(3)}(x)=-2sec^2xtan^2x The value of the third derivative at x=3πx=\frac3π ​ is

f(3)(π3)=2sec2π3tanπ3=2×4×3=83f^{(3)}(\frac{π}3)=−2sec^2\frac{π}3tan⁡\frac{π}3=−2×4×\sqrt3=−8\sqrt3



The fourth derivative of f(x)f(x) is f(4)(x)=4sec2xtan2x+2sec4xf^{(4)}(x)=4sec^2xtan^2x+2sec^4x

The value of the fourth derivative at x=π3x=\frac{π}{3} Is

f(4)(π3)=4sec2π3tan2n3+2sec4π3=4×4×(3)2+2×1(12)2=48+2×16=48+32=80f^{(4)}(\frac{π}{3})=4sec^2\frac{π}{3}tan^2\frac{n}{3}+2sec^4\frac{π}{3}= −4×4×(\sqrt3)^2+2×\frac{1}{(\frac{1}{2})^2}\\=48+2×16=48+32=80


Now, substituting all these values in the Taylor's expansion series, we get

f(log(cosx))=log(12)+(3)(xπ3)+(4)2!(xπ3)2+(833!(xπ3)3+804!(xπ3)4f(log(cosx))=log(\frac{1}{2})+(-\sqrt{3})(x-\frac{π}{3})+\frac{(-4)}{2!}(x-\frac{π}{3})^2+\frac{(-8\sqrt3}{3!}(x-\frac{π}{3})^3+\frac{80}{4!}(x-\frac{π}{3})^4


Simplifying the above equation, we get

f(log(cosx))=log(12)+(3)(xπ3)2(xπ3)2(433(xπ3)3+103(xπ3)4f(log(cosx))=log(\frac{1}{2})+(-\sqrt{3})(x-\frac{π}{3})-2(x-\frac{π}{3})^2-\frac{(4\sqrt3}{3}(x-\frac{π}{3})^3+\frac{10}{3}(x-\frac{π}{3})^4


The above equation is the Taylor's series expansion up to the fourth degree term of the function f(x)=log(cosx)f(x)=log(cosx)




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment