If the temperature on metal sheet is defined by f (x, y,z) = e ^2xcos(y − 2z) then find the maximum
rate of change of the function at the (4, −2, 0) and the direction in which this maximum rate of change
of temperature occurs.
"\\displaystyle\n\n\\nabla F = 2e^{2x}\\cos(y - 2z) \\vec{i} - e^{2x}\\sin(y - 2z) \\vec{j} + 2e^{2x}\\sin(y - 2z) \\vec{k} \\\\\n\n\n\\nabla F = (2e^{8}\\cos(2), -e^{8}\\sin(2), 2e^{8}\\sin(2))\\\\\n\n\n|\\nabla F| = \\sqrt{4e^{16}\\cos^2(2) + 5e^{16}\\sin^2(2)} = e^{8}\\sqrt{\\sin^2(2) + 4}\\\\\n\n\\textsf{The maximum rate of change is}\\,\\,\\, e^{8}\\sqrt{\\sin^2(2) + 4}\\\\\n\\textsf{and it's direction is}\\,\\,\\, 2e^{8}\\cos(2) \\vec{i} - e^{8}\\sin(2)\\vec{j} + 2e^{8}\\sin(2)\\vec{k}"
Comments
Leave a comment