Question #219531
Solve the integral of tanhxsech
1
Expert's answer
2021-07-22T08:41:55-0400
tanhxsechxdx=sinhxcosh2xdx\int \tanh x\text{sech} xdx=\int\dfrac{\sinh x}{\cosh^2 x}dx

u=coshx,d=sinhxdxu=\cosh x, d=\sinh xdx


tanhxsechxdx=sinhxcosh2xdx\int \tanh x\text{sech} xdx=\int\dfrac{\sinh x}{\cosh^2 x}dx

=duu2=1u+C=1coshx+C==\int\dfrac{du}{ u^2}=-\dfrac{1}{u}+C=-\dfrac{1}{\cosh x}+C=

=sechx=-\text{sech} x


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS