evaluate
"\\int_{y=1}^2\\int_{x=0}^3(1+8xy)dxdy"
ANSWER:"\\int _{ y=1 }^{ 2 }{ \\int _{ x=0 }^{ 3 }{ \\left( 1+8xy \\right) dxdy } } =\\ 57"
EXPLANATION.
Since "\\int _{ x=0 }^{ 3 }{ \\left( 1+8xy \\right) dx\\ } =\\ \\int _{ x=0 }^{ 3 }{ dx } +8y\\int _{ x=0 }^{ 3 }{ xdx } =3+8y{ \\left( \\frac { { x }^{ 2 } }{ 2 } \\right) }_{ x=0 }^{ 3 }\\ =3+\\ 36y" , then "\\int _{ y=1 }^{ 2 }{ \\int _{ x=0 }^{ 3 }{ \\left( 1+8xy \\right) dxdy } } =\\int _{ y=1 }^{ 2 }{ (3+\\ 36y)dy } = { \\left( 3y+18{ y }^{ 2 } \\right) }_{ 1 }^{ 2 }=6+18\\cdot 4-3-18=57\\\\"
Comments
Leave a comment