evaluate
∫y=12∫x=03(1+8xy)dxdy\int_{y=1}^2\int_{x=0}^3(1+8xy)dxdy∫y=12∫x=03(1+8xy)dxdy
ANSWER:∫y=12∫x=03(1+8xy)dxdy= 57\int _{ y=1 }^{ 2 }{ \int _{ x=0 }^{ 3 }{ \left( 1+8xy \right) dxdy } } =\ 57∫y=12∫x=03(1+8xy)dxdy= 57
EXPLANATION.
Since ∫x=03(1+8xy)dx = ∫x=03dx+8y∫x=03xdx=3+8y(x22)x=03 =3+ 36y\int _{ x=0 }^{ 3 }{ \left( 1+8xy \right) dx\ } =\ \int _{ x=0 }^{ 3 }{ dx } +8y\int _{ x=0 }^{ 3 }{ xdx } =3+8y{ \left( \frac { { x }^{ 2 } }{ 2 } \right) }_{ x=0 }^{ 3 }\ =3+\ 36y∫x=03(1+8xy)dx = ∫x=03dx+8y∫x=03xdx=3+8y(2x2)x=03 =3+ 36y , then ∫y=12∫x=03(1+8xy)dxdy=∫y=12(3+ 36y)dy=(3y+18y2)12=6+18⋅4−3−18=57\int _{ y=1 }^{ 2 }{ \int _{ x=0 }^{ 3 }{ \left( 1+8xy \right) dxdy } } =\int _{ y=1 }^{ 2 }{ (3+\ 36y)dy } = { \left( 3y+18{ y }^{ 2 } \right) }_{ 1 }^{ 2 }=6+18\cdot 4-3-18=57\\∫y=12∫x=03(1+8xy)dxdy=∫y=12(3+ 36y)dy=(3y+18y2)12=6+18⋅4−3−18=57
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments
Leave a comment