Answer to Question #219583 in Calculus for Rehema

Question #219583

evaluate

y=12x=03(1+8xy)dxdy\int_{y=1}^2\int_{x=0}^3(1+8xy)dxdy


1
Expert's answer
2021-07-22T11:09:43-0400

ANSWER:y=12x=03(1+8xy)dxdy= 57\int _{ y=1 }^{ 2 }{ \int _{ x=0 }^{ 3 }{ \left( 1+8xy \right) dxdy } } =\ 57

EXPLANATION.

Since x=03(1+8xy)dx = x=03dx+8yx=03xdx=3+8y(x22)x=03 =3+ 36y\int _{ x=0 }^{ 3 }{ \left( 1+8xy \right) dx\ } =\ \int _{ x=0 }^{ 3 }{ dx } +8y\int _{ x=0 }^{ 3 }{ xdx } =3+8y{ \left( \frac { { x }^{ 2 } }{ 2 } \right) }_{ x=0 }^{ 3 }\ =3+\ 36y , then y=12x=03(1+8xy)dxdy=y=12(3+ 36y)dy=(3y+18y2)12=6+184318=57\int _{ y=1 }^{ 2 }{ \int _{ x=0 }^{ 3 }{ \left( 1+8xy \right) dxdy } } =\int _{ y=1 }^{ 2 }{ (3+\ 36y)dy } = { \left( 3y+18{ y }^{ 2 } \right) }_{ 1 }^{ 2 }=6+18\cdot 4-3-18=57\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment