We’ll integrate in the order d x d y d z . dxdydz. d x d y d z .
x = 1 : 1 = 2 y 2 + 2 z 2 − 5 x=1: 1=2y^2+2z^2-5 x = 1 : 1 = 2 y 2 + 2 z 2 − 5
y 2 + z 2 = 3 y^2+z^2=3 y 2 + z 2 = 3 We have Q = { ( y , z ) : y 2 + z 2 ≤ 3 } Q=\{(y, z):y^2+z^2\leq3\} Q = {( y , z ) : y 2 + z 2 ≤ 3 } and
∫ ∫ ∫ E y z d V = ∫ ∫ Q ( ∫ 2 y 2 + 2 z 2 − 5 1 y z d x ) d A \int \int \int_E yzdV=\int \int_Q\bigg(\displaystyle\int_{2y^2+2z^2-5}^{1}yzdx\bigg)dA ∫∫ ∫ E yz d V = ∫ ∫ Q ( ∫ 2 y 2 + 2 z 2 − 5 1 yz d x ) d A
= ∫ ∫ Q ( 1 − 2 y 2 − 2 z 2 + 5 ) y z d A =\int \int_Q(1-2y^2-2z^2+5)yzdA = ∫ ∫ Q ( 1 − 2 y 2 − 2 z 2 + 5 ) yz d A
= ∫ 0 2 π ∫ 0 3 ( 6 − 2 r 2 ) r sin θ r cos θ r d r d θ =\displaystyle\int_{0}^{2\pi}\displaystyle\int_{0}^{\sqrt{3}}(6-2r^2)r\sin\theta r\cos\theta rdrd\theta = ∫ 0 2 π ∫ 0 3 ( 6 − 2 r 2 ) r sin θ r cos θ r d r d θ
= ∫ 0 2 π sin ( 2 θ ) [ 3 r 4 4 − r 6 6 ] 3 0 d θ =\displaystyle\int_{0}^{2\pi}\sin (2\theta )\bigg[\dfrac{3r^4}{4}-\dfrac{r^6}{6}\bigg]\begin{matrix}
\sqrt{3} \\
0
\end{matrix}d\theta = ∫ 0 2 π sin ( 2 θ ) [ 4 3 r 4 − 6 r 6 ] 3 0 d θ
= ∫ 0 2 π 9 4 sin ( 2 θ ) d θ =\displaystyle\int_{0}^{2\pi}\dfrac{9}{4}\sin (2\theta )d\theta = ∫ 0 2 π 4 9 sin ( 2 θ ) d θ
= − 9 8 [ cos ( 2 θ ) ] 2 π 0 = 0 =-\dfrac{9}{8}[\cos(2\theta)]\begin{matrix}
2\pi \\
0
\end{matrix}=0 = − 8 9 [ cos ( 2 θ )] 2 π 0 = 0
Comments