Question #219405

Evaluate integral integral integral yz dv where E is the region bounded by x = 2y^2 + 2z^2 - 5 and the plane x = 1


1
Expert's answer
2021-07-21T17:44:58-0400

We’ll integrate in the order dxdydz.dxdydz.


x=1:1=2y2+2z25x=1: 1=2y^2+2z^2-5

y2+z2=3y^2+z^2=3

We have Q={(y,z):y2+z23}Q=\{(y, z):y^2+z^2\leq3\} and


EyzdV=Q(2y2+2z251yzdx)dA\int \int \int_E yzdV=\int \int_Q\bigg(\displaystyle\int_{2y^2+2z^2-5}^{1}yzdx\bigg)dA

=Q(12y22z2+5)yzdA=\int \int_Q(1-2y^2-2z^2+5)yzdA

=02π03(62r2)rsinθrcosθrdrdθ=\displaystyle\int_{0}^{2\pi}\displaystyle\int_{0}^{\sqrt{3}}(6-2r^2)r\sin\theta r\cos\theta rdrd\theta

=02πsin(2θ)[3r44r66]30dθ=\displaystyle\int_{0}^{2\pi}\sin (2\theta )\bigg[\dfrac{3r^4}{4}-\dfrac{r^6}{6}\bigg]\begin{matrix} \sqrt{3} \\ 0 \end{matrix}d\theta

=02π94sin(2θ)dθ=\displaystyle\int_{0}^{2\pi}\dfrac{9}{4}\sin (2\theta )d\theta

=98[cos(2θ)]2π0=0=-\dfrac{9}{8}[\cos(2\theta)]\begin{matrix} 2\pi \\ 0 \end{matrix}=0



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS