We’ll integrate in the order dxdydz.
x=1:1=2y2+2z2−5
y2+z2=3 We have Q={(y,z):y2+z2≤3} and
∫∫∫EyzdV=∫∫Q(∫2y2+2z2−51yzdx)dA
=∫∫Q(1−2y2−2z2+5)yzdA
=∫02π∫03(6−2r2)rsinθrcosθrdrdθ
=∫02πsin(2θ)[43r4−6r6]30dθ
=∫02π49sin(2θ)dθ
=−89[cos(2θ)]2π0=0
Comments