The function f(x)=3x2−2x+5 is continuous for x∈R as polynomial.
f′(x)=6x−2
f′(x)=0=>6x−2=0=>x=31 If x>31,f′(x)>0,f(x) is strictly increasing.
f(1)=3(1)2−2(1)+5=6
f(2)=3(2)2−2(2)+5=13
f(3)=3(3)2−2(3)+5=26
f:[1,2]→[6,26]
f:[2,3]→[13,26]
f:{1,2,3}→{6,13,26}
Comments