a)
f(x)=2x3+3x2−12x+1
Domain: (−∞,∞)
f′(x)=(2x3+3x2−12x+1)′=6x2+6x−12 Find the critical number(s)
f′(x)=0=>6x2+6x−12=0
x2+x−2=0
(x+2)(x−1)=0
x1=−2,x2=1 Critical numbers: −2,1.
If x<−2,f′(x)>0,f(x) increases.
If −2<x<1,f′(x)<0,f(x) decreases.
If x>1,f′(x)>0,f(x) increases.
f(−2)=2(−2)3+3(−2)2−12(−2)+1=21
f(1)=2(1)3+3(1)2−12(1)+1=−6 The function f has a local maximum with value of 21 at x=−2.
The function f has a local minimum with value of −6 at x=1.
f′′(x)=(6x2+6x−12)′=12x−6
f′′(x)=0=>12x−6=0=>x=21
f(21)=2(21)3+3(21)2−12(21)+1=−4 If x<21,f′′(x)<0,f(x) is concave down.
If x>21,f′′(x)>0,f(x) is concave up.
Point (21,−4) is an inflection point.
Point (−2,21) is a local maximum.
Point (1,−6) is a local minimum.
Point (21,−4) is an inflection point.
(b)
Let x= the first number, let y= the second number.
Given x+y=S,x>0,y>0.
Then y=S−x,0<x<S,
The product of these numbers is P=xy.
Substitute
P=P(x)=x(S−x),0<x<S
Find the first derivative with respect to x
P′(x)=(x(S−x))′=S−x−x=S−2x Find the critical number(s)
P′(x)=0=>S−2x=0=>x=21SIf 0<x<21S,P′(x)>0,P(x) increases.
If 21S<x<S,P′(x)<0,P(x)decreases.
The function P has a local maximum at x=21S.
Since the function P has the only extremum on (0,S), then the function P has the absolute maximum on (0,S) at x=21S.
y=S−21S=21S
P=21S(21S)=41S2.
The maximum value of the product is 41S2.
Comments