Question #219404

a) find and classify the critical points of the functions f(x) = 2x^3 + 3x^2 - 12 x +1 into maximum, minimum and inflection points as appreciate.

(b) The sum of two positive numbers is S. find the maximum value of their product.


1
Expert's answer
2021-07-21T17:20:38-0400

a)


f(x)=2x3+3x212x+1f(x)=2x^3 + 3x^2 - 12 x +1

Domain: (,)(-\infin, \infin)


f(x)=(2x3+3x212x+1)=6x2+6x12f'(x)=(2x^3 + 3x^2 - 12 x +1)'=6x^2+6x-12

Find the critical number(s)


f(x)=0=>6x2+6x12=0f'(x)=0=>6x^2+6x-12=0

x2+x2=0x^2+x-2=0

(x+2)(x1)=0(x+2)(x-1)=0

x1=2,x2=1x_1=-2, x_2=1

Critical numbers: 2,1.-2, 1.


If x<2,f(x)>0,f(x)x<-2, f'(x)>0, f(x) increases.

If 2<x<1,f(x)<0,f(x)-2<x<1, f'(x)<0, f(x) decreases.

If x>1,f(x)>0,f(x)x>1, f'(x)>0, f(x) increases.


f(2)=2(2)3+3(2)212(2)+1=21f(-2)=2(-2)^3+3(-2)^2-12(-2)+1=21

f(1)=2(1)3+3(1)212(1)+1=6f(1)=2(1)^3+3(1)^2-12(1)+1=-6

The function ff has a local maximum with value of 2121 at x=2.x=-2.


The function ff has a local minimum with value of 6-6 at x=1.x=1.




f(x)=(6x2+6x12)=12x6f''(x)=(6x^2+6x-12)'=12x-6

f(x)=0=>12x6=0=>x=12f''(x)=0=>12x-6=0=>x=\dfrac{1}{2}

f(12)=2(12)3+3(12)212(12)+1=4f(\dfrac{1}{2})=2(\dfrac{1}{2})^3+3(\dfrac{1}{2})^2-12(\dfrac{1}{2})+1=-4

If x<12,f(x)<0,f(x)x<\dfrac{1}{2}, f''(x)<0, f(x) is concave down.

If x>12,f(x)>0,f(x)x>\dfrac{1}{2}, f''(x)>0, f(x) is concave up.

Point (12,4)(\dfrac{1}{2}, -4) is an inflection point.


Point (2,21)(-2, 21) is a local maximum.

Point (1,6)(1, -6) is a local minimum.

Point (12,4)(\dfrac{1}{2}, -4) is an inflection point.



(b)

Let x=x= the first number, let y=y= the second number.

Given x+y=S,x>0,y>0.x+y=S, x>0, y>0.


Then y=Sx,0<x<S,y=S-x, 0<x<S,


The product of these numbers is P=xy.P=xy.

Substitute


P=P(x)=x(Sx),0<x<SP=P(x)=x(S-x), 0<x<S

Find the first derivative with respect to xx


P(x)=(x(Sx))=Sxx=S2xP'(x)=(x(S-x))'=S-x-x=S-2x

Find the critical number(s)


P(x)=0=>S2x=0=>x=12SP'(x)=0=>S-2x=0=>x=\dfrac{1}{2}S

If 0<x<12S,P(x)>0,P(x)0<x<\dfrac{1}{2}S, P'(x)>0, P(x) increases.


If 12S<x<S,P(x)<0,P(x)\dfrac{1}{2}S<x<S, P'(x)<0, P(x)decreases.

The function PP has a local maximum at x=12S.x=\dfrac{1}{2}S.

Since the function PP has the only extremum on (0,S),(0, S), then the function PP has the absolute maximum on (0,S)(0, S) at x=12S.x=\dfrac{1}{2}S.


y=S12S=12Sy=S-\dfrac{1}{2}S=\dfrac{1}{2}S

P=12S(12S)=14S2.P=\dfrac{1}{2}S(\dfrac{1}{2}S)=\dfrac{1}{4}S^2.

The maximum value of the product is 14S2.\dfrac{1}{4}S^2.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS