Question #219722

Find the critical numbers of the function

ƒ(x) = 2x³ +8x +x²


Find the absolute maximum and minimum values of f on the given interval

ƒ(x) = x^4 + 4x³ - 9



Verify the MVT and find the value of c in the given interval

 y = x³ - 9x² + 24x − 18; [2, 4]


1
Expert's answer
2021-08-19T07:43:31-0400

1.


f(x)=2x3+8x+x2f(x)=2x^3+8x+x^2

The critical numbers of the function are such numbers that f(x)=0.f'(x)=0.

Find f(x)f'(x)


f(x)=6x2+2x+8f'(x)=6x^2+2x+8

Solve for x


6x2+2x+8=03x2+x+4=06x^2+2x+8=0\newline 3x^2+x+4=0

D=1434=47,D<0,D=1-4•3•4=-47, D<0,

there are not real roots.

Answer. There aren't critical numbers.

2.


f(x)=x4+4x39f(x)=x^4+4x^3-9

Find


f(x)=4x3+12x2f'(x)=4x^3+12x^2

Solve for x


4x3+12x2=04x^3+12x^2=04x2(x+3)=04x^2(x+3)=0x=0,or x=3x=0, \text{or } x=-3

There are two critical numbers 0 and -3.

Find the sign of derivative on the intervals (,3),(3,0),(0,).(-\infty,-3),(-3,0),(0,\infty).

On the interval (,3)(-\infty,-3) f(x)<0,f(x)f'(x)<0, f(x) decreases.

On the interval (3,0)(-3,0) f(x)>0,f(x)f'(x)>0, f(x) increases.

On the interval (0,)(0,\infty) f(x)>0,f(x)f'(x)>0, f(x) increases.

Consider the segment [a,b], where a<-3 and b>0. Then the critical point -3 and 0 are in segment [a,b].

Let be a=-5 and b=1

Find

f(5)=(5)4+4(5)39=491f(0)=9f(1)=14+4139=4f(-5)=(-5)^4+4\cdot(-5)^3-9=491 \newline f(0)=-9 \newline f(1)=1^4+4\cdot1^3-9=-4

f(3)=(3)4+4(3)39=36.f(-3)=(-3)^4+4•(-3)^3-9=-36.

Answer. Therefore function f(x)f(x) has the absolute minimum value -36 and the absolute maximum value 491 on the segment [-5,1].


3.

The function f is continuous on the interval [2,4] and differentiable on the interval ]2,4[, therefore we can apply the MVT (mean value theorem) which states that there is c∈[2,4]

 such that


f(c)=f(4)f(2)42f'(c)=\frac{f(4)-f(2)}{4-2}f(x)=x39x2+24x18f(x)=x^3-9x^2+24x-18f(2)=2,f(4)=2f(2)=2, f(4)=-2


Therefore,


f(c)=(22)/2=2f'(c)=(-2-2)/2=-2


Also,


f(x)=3x218x+24f'(x)=3x^2-18x+24f(c)=3c218c+24=2f'(c)=3c^2-18c+24=-2

Solving for c


3c218c+26=03c^2-18c+26=0

D=12,D>0,D=12, D>0, so there are 2 real roots


c=9±33.c=\frac{9\pm\sqrt{3}}{3}.

Both values of c ∈[2,4].

Answer. c=9±33c=\frac{9\pm\sqrt{3}}{3}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS