Let R be the region bounded by the lines y=2x-1,y=2x-2,y=0 and y=4. By making the substitutions u=(2x-y)/2 ,v=y/2 and integrating over a suitable region evaluate the integral
"\\intop"04 "\\intop"x=y/2+1 x=y/2. (2x-y)/2 dxdy
"y=2x-1,y=2x-2,y=0, y=4\\\\\nu=\\frac{2x-y}{2}, v=\\frac{y}{2} \\implies x=u+v, y=2v\\\\\nJ= \\frac{\\partial (x,y)}{\\partial (u,v)}=\\begin{vmatrix}\n \\frac{\\partial x}{\\partial u} & \\frac{\\partial y}{\\partial u} \\\\\n \\frac{\\partial x}{\\partial v} & \\frac{\\partial y}{\\partial v}\n\\end{vmatrix} =\\begin{vmatrix}\n 1 & 0 \\\\\n 1 & 2\n\\end{vmatrix} =2"
The integral is "I= \\int_0^4 \\int_{x=\\frac{y}{2}}^{x={\\frac{y}{2}}+1}(2x-y) \\frac{1}{2}dxdy\\\\"
"I= \\int_{u=0}^{u=1} \\int_{v=0}^{v={2}}u|J|dudv\\\\\nI= \\int_{0}^{1} \\int_{0}^{{2}}u(2)dudv\\\\\nI=2[\\frac{u^2}{2}]_0^1[v]_0^2 \\\\\nI=1(2)\\\\\nI=2"
Comments
Leave a comment