y = 2 x − 1 , y = 2 x − 2 , y = 0 , y = 4 u = 2 x − y 2 , v = y 2 ⟹ x = u + v , y = 2 v J = ∂ ( x , y ) ∂ ( u , v ) = ∣ ∂ x ∂ u ∂ y ∂ u ∂ x ∂ v ∂ y ∂ v ∣ = ∣ 1 0 1 2 ∣ = 2 y=2x-1,y=2x-2,y=0, y=4\\
u=\frac{2x-y}{2}, v=\frac{y}{2} \implies x=u+v, y=2v\\
J= \frac{\partial (x,y)}{\partial (u,v)}=\begin{vmatrix}
\frac{\partial x}{\partial u} & \frac{\partial y}{\partial u} \\
\frac{\partial x}{\partial v} & \frac{\partial y}{\partial v}
\end{vmatrix} =\begin{vmatrix}
1 & 0 \\
1 & 2
\end{vmatrix} =2 y = 2 x − 1 , y = 2 x − 2 , y = 0 , y = 4 u = 2 2 x − y , v = 2 y ⟹ x = u + v , y = 2 v J = ∂ ( u , v ) ∂ ( x , y ) = ∣ ∣ ∂ u ∂ x ∂ v ∂ x ∂ u ∂ y ∂ v ∂ y ∣ ∣ = ∣ ∣ 1 1 0 2 ∣ ∣ = 2
The integral is I = ∫ 0 4 ∫ x = y 2 x = y 2 + 1 ( 2 x − y ) 1 2 d x d y I= \int_0^4 \int_{x=\frac{y}{2}}^{x={\frac{y}{2}}+1}(2x-y) \frac{1}{2}dxdy\\ I = ∫ 0 4 ∫ x = 2 y x = 2 y + 1 ( 2 x − y ) 2 1 d x d y
I = ∫ u = 0 u = 1 ∫ v = 0 v = 2 u ∣ J ∣ d u d v I = ∫ 0 1 ∫ 0 2 u ( 2 ) d u d v I = 2 [ u 2 2 ] 0 1 [ v ] 0 2 I = 1 ( 2 ) I = 2 I= \int_{u=0}^{u=1} \int_{v=0}^{v={2}}u|J|dudv\\
I= \int_{0}^{1} \int_{0}^{{2}}u(2)dudv\\
I=2[\frac{u^2}{2}]_0^1[v]_0^2 \\
I=1(2)\\
I=2 I = ∫ u = 0 u = 1 ∫ v = 0 v = 2 u ∣ J ∣ d u d v I = ∫ 0 1 ∫ 0 2 u ( 2 ) d u d v I = 2 [ 2 u 2 ] 0 1 [ v ] 0 2 I = 1 ( 2 ) I = 2
Comments