Question #219989
F~  d~r where F~ (x, y) = y
2~i + (3x − 6y) ~j and C is the line segment from (3, 7) to (0, 12).
1
Expert's answer
2021-07-26T11:14:54-0400

r(t)=(1t)(3,7)+t(0,12)=(33t,5t+7)r(t)=(1-t)(3,7)+t(0,12)=(3-3t,5t+7)


F(r(t))=(5t+7)2i+(3(33t)6(5t+7))j=F(r(t))=(5t+7)^2i+(3(3-3t)-6(5t+7))j=

=(25t2+70t+49)i+(39t33)j=(25t^2+70t+49)i+(-39t-33)j


r(t)=(3,5)r'(t)=(-3,5)


F(r(t))r(t)=75t2210t147195t165=75t2405t312F(r(t))\cdot r'(t)=-75t^2-210t-147-195t-165=-75t^2-405t-312


CFdr=01(75t2405t312)dt=(25t3405t2/2312t)01=\int_C F\cdot dr=\int^1_0(-75t^2-405t-312)dt=(-25t^3-405t^2/2-312t)^1_0=


=25405/2312=539.5=-25-405/2-312=-539.5


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS