r(t)=(1−t)(3,7)+t(0,12)=(3−3t,5t+7)r(t)=(1-t)(3,7)+t(0,12)=(3-3t,5t+7)r(t)=(1−t)(3,7)+t(0,12)=(3−3t,5t+7)
F(r(t))=(5t+7)2i+(3(3−3t)−6(5t+7))j=F(r(t))=(5t+7)^2i+(3(3-3t)-6(5t+7))j=F(r(t))=(5t+7)2i+(3(3−3t)−6(5t+7))j=
=(25t2+70t+49)i+(−39t−33)j=(25t^2+70t+49)i+(-39t-33)j=(25t2+70t+49)i+(−39t−33)j
r′(t)=(−3,5)r'(t)=(-3,5)r′(t)=(−3,5)
F(r(t))⋅r′(t)=−75t2−210t−147−195t−165=−75t2−405t−312F(r(t))\cdot r'(t)=-75t^2-210t-147-195t-165=-75t^2-405t-312F(r(t))⋅r′(t)=−75t2−210t−147−195t−165=−75t2−405t−312
∫CF⋅dr=∫01(−75t2−405t−312)dt=(−25t3−405t2/2−312t)01=\int_C F\cdot dr=\int^1_0(-75t^2-405t-312)dt=(-25t^3-405t^2/2-312t)^1_0=∫CF⋅dr=∫01(−75t2−405t−312)dt=(−25t3−405t2/2−312t)01=
=−25−405/2−312=−539.5=-25-405/2-312=-539.5=−25−405/2−312=−539.5
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments