lim [x^2 sin(1/x)/(sinx) =1
x to 0
True or false with full explanation
"L=\\displaystyle \\lim_{x\\to 0} \\frac{x^2 sin(\\frac{1}{x})}{sin \\ x}=\\displaystyle \\lim_{x\\to 0} \\frac{x sin(\\frac{1}{x})}{\\frac{sin \\ x}{x}}" "=" "\\displaystyle \\lim_{x\\to 0} \\frac{\\frac{sin(1\/x)}{1\/x}}{\\frac{sin \\ x}{x}}"
"=" "\\frac{\\displaystyle \\lim_{x\\to 0}{\\frac{sin(1\/x)}{1\/x}}}{\\displaystyle \\lim_{x\\to 0}\\frac{sin \\ x}{x}}"
Now, "\\displaystyle \\lim_{x\\to 0}\\frac{sin \\ x}{x}=1"
So , "L=\\displaystyle \\lim_{x\\to 0}{\\frac{sin(1\/x)}{1\/x}}=\\displaystyle \\lim_{x\\to 0} x\\ sin (1\/x)"
and "\\displaystyle \\lim_{x\\to 0} x\\ sin\\ \\theta =0 \\ \\forall \\ \\theta \\isin \\ R"
"L=\\displaystyle \\lim_{x\\to 0} x\\ sin (1\/x)=0"
Hence, the statement "L=\\displaystyle \\lim_{x\\to 0} \\frac{x^2 sin(\\frac{1}{x})}{sin \\ x}=1" is wrong.
Comments
Leave a comment