Question #213232

lim [x^2 sin(1/x)/(sinx) =1

x to 0

True or false with full explanation


1
Expert's answer
2021-07-06T10:04:04-0400

L=limx0x2sin(1x)sin x=limx0xsin(1x)sin xxL=\displaystyle \lim_{x\to 0} \frac{x^2 sin(\frac{1}{x})}{sin \ x}=\displaystyle \lim_{x\to 0} \frac{x sin(\frac{1}{x})}{\frac{sin \ x}{x}} == limx0sin(1/x)1/xsin xx\displaystyle \lim_{x\to 0} \frac{\frac{sin(1/x)}{1/x}}{\frac{sin \ x}{x}}

== limx0sin(1/x)1/xlimx0sin xx\frac{\displaystyle \lim_{x\to 0}{\frac{sin(1/x)}{1/x}}}{\displaystyle \lim_{x\to 0}\frac{sin \ x}{x}}

Now, limx0sin xx=1\displaystyle \lim_{x\to 0}\frac{sin \ x}{x}=1

So , L=limx0sin(1/x)1/x=limx0x sin(1/x)L=\displaystyle \lim_{x\to 0}{\frac{sin(1/x)}{1/x}}=\displaystyle \lim_{x\to 0} x\ sin (1/x)

and limx0x sin θ=0  θ R\displaystyle \lim_{x\to 0} x\ sin\ \theta =0 \ \forall \ \theta \isin \ R

L=limx0x sin(1/x)=0L=\displaystyle \lim_{x\to 0} x\ sin (1/x)=0

Hence, the statement L=limx0x2sin(1x)sin x=1L=\displaystyle \lim_{x\to 0} \frac{x^2 sin(\frac{1}{x})}{sin \ x}=1 is wrong.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS