L=x→0limsin xx2sin(x1)=x→0limxsin xxsin(x1) = x→0limxsin x1/xsin(1/x)
= x→0limxsin xx→0lim1/xsin(1/x)
Now, x→0limxsin x=1
So , L=x→0lim1/xsin(1/x)=x→0limx sin(1/x)
and x→0limx sin θ=0 ∀ θ∈ R
L=x→0limx sin(1/x)=0
Hence, the statement L=x→0limsin xx2sin(x1)=1 is wrong.
Comments