Prove from first principles that the function f(x,y) = xsin y + y cos L
f(x, y) = x sin y + y cos L
By first principle, we have
f x (x, y) = lim h"\\rightarrow"0 "\\dfrac{f(x + h, y) - f(x, y)}{h}"
f x (x, y) = lim h"\\rightarrow"0 "\\dfrac{(x + h)sin y + y cosL - (x sin y + y cos L) }{h}"
f x (x, y) = lim h"\\rightarrow"0 "\\dfrac{(x + h)sin y - x sin y }{h}"
f x (x, y) = lim h"\\rightarrow"0 "\\dfrac{ h sin y }{h}"
f x (x, y) = "sin y"
f y (x, y) = lim k"\\rightarrow"0 "\\dfrac{f(x , y + k) - f(x, y)}{k}"
f y (x, y) = lim k"\\rightarrow"0 "\\dfrac{x sin (y + k) - (y + k )cosL}{k}"
f y (x, y) = lim k"\\rightarrow"0 "\\dfrac{x (sin y \\cos k + sink\\cos y) - (y + k )cosL}{k}"
f y (x, y) = lim k"\\rightarrow"0 "\\dfrac{x \\sin y \\cos k }{k} +\\dfrac{ sink \\ cosy}{k} -\\dfrac{ (y + k )cosL}{k}"
On substituting the limit we see that f y (x, y) does not exist.
Comments
Leave a comment