f(x, y) = x sin y + y cos L
By first principle, we have
f x (x, y) = lim h→0 hf(x+h,y)−f(x,y)
f x (x, y) = lim h→0 h(x+h)siny+ycosL−(xsiny+ycosL)
f x (x, y) = lim h→0 h(x+h)siny−xsiny
f x (x, y) = lim h→0 hhsiny
f x (x, y) = siny
f y (x, y) = lim k→0 kf(x,y+k)−f(x,y)
f y (x, y) = lim k→0 kxsin(y+k)−(y+k)cosL
f y (x, y) = lim k→0 kx(sinycosk+sinkcosy)−(y+k)cosL
f y (x, y) = lim k→0 kxsinycosk+ksink cosy−k(y+k)cosL
On substituting the limit we see that f y (x, y) does not exist.
Comments