Question #213080

Prove from first principles that the function f(x,y) = xsin y + y cos L

1
Expert's answer
2021-07-05T17:19:20-0400

 f(x, y) = x sin y + y cos L


By first principle, we have


f x (x, y) = lim h\rightarrow0 f(x+h,y)f(x,y)h\dfrac{f(x + h, y) - f(x, y)}{h}


f x (x, y) = lim h\rightarrow0 (x+h)siny+ycosL(xsiny+ycosL)h\dfrac{(x + h)sin y + y cosL - (x sin y + y cos L) }{h}


f x (x, y) = lim h\rightarrow0 (x+h)sinyxsinyh\dfrac{(x + h)sin y - x sin y }{h}


f x (x, y) = lim h\rightarrow0 hsinyh\dfrac{ h sin y }{h}


f x (x, y) = sinysin y






f y (x, y) = lim k\rightarrow0 f(x,y+k)f(x,y)k\dfrac{f(x , y + k) - f(x, y)}{k}


f y (x, y) = lim k\rightarrow0 xsin(y+k)(y+k)cosLk\dfrac{x sin (y + k) - (y + k )cosL}{k}


f y (x, y) = lim k\rightarrow0 x(sinycosk+sinkcosy)(y+k)cosLk\dfrac{x (sin y \cos k + sink\cos y) - (y + k )cosL}{k}


f y (x, y) = lim k\rightarrow0 xsinycoskk+sink cosyk(y+k)cosLk\dfrac{x \sin y \cos k }{k} +\dfrac{ sink \ cosy}{k} -\dfrac{ (y + k )cosL}{k}


On substituting the limit we see that f y (x, y) does not exist.




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS