integral fraction numerator dx over denominator x square root of x to the power of 4 minus 16 end root end fraction
∫dxxx4−16put x4−16=t24x3dx=2tdt∫dxxx4−16=12∫dtt2+16=132∫dt(t4)2+1=432tan−1(t4)+c=18tan−1(x4−164)+c\int\frac{dx}{x\sqrt{x^4-16}}\\ put \space x^4-16=t^2\\ 4x^3dx=2tdt\\ \int\frac{dx}{x\sqrt{x^4-16}}\\ =\frac{1}{2}\int\frac{dt}{t^2+16}\\ =\frac{1}{32}\int\frac{dt}{(\frac{t}{4})^2+1}\\ =\frac{4}{32}tan^{-1}(\frac{t}{4})+c\\ =\frac{1}{8}tan^{-1}(\frac{\sqrt{x^4-16} }{4})+c\\∫xx4−16dxput x4−16=t24x3dx=2tdt∫xx4−16dx=21∫t2+16dt=321∫(4t)2+1dt=324tan−1(4t)+c=81tan−1(4x4−16)+c
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments