Question #206986

test ∑n=1 ∞​ [✓n^4 +9 - ✓n^4 -9] is convergent or not


1
Expert's answer
2021-06-29T09:29:18-0400

Σn=1(n4+9n49)==Σn=1(n4+9n49)(n4+9+n49)(n4+9+n49)==Σn=118n4+9+n4918n4+9+n49182n2=9n2\Sigma_{n=1}^{\infty}(\sqrt{n^4+9}-\sqrt{n^4-9})=\\ =\Sigma_{n=1}^{\infty}\frac{(\sqrt{n^4+9}-\sqrt{n^4-9})(\sqrt{n^4+9}+\sqrt{n^4-9})}{(\sqrt{n^4+9}+\sqrt{n^4-9})}=\\ =\Sigma_{n=1}^{\infty}\frac{18}{\sqrt{n^4+9}+\sqrt{n^4-9}}\\ \frac{18}{\sqrt{n^4+9}+\sqrt{n^4-9}}\leftrightarrow\frac{18}{2n^2}=\frac{9}{n^2}

Σn=19n2\Sigma_{n=1}^{\infty}\frac{9}{n^2} is convergent


Σn=1(n4+9n49)\Sigma_{n=1}^{\infty}(\sqrt{n^4+9}-\sqrt{n^4-9}) is convergent


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS