given:
f(x)=(−x+2)4,where 0≤x≤3
differentiate with respect to x
f′(x)=4(−x+2)3
now
f′(x)=0⟹−4(−x+2)3=0⟹−x+2=0⟹x=2
now
f(0)=(0+2)4=16f(1)=(−1+2)4=1f(2)=(−2+2)4=0f(3)=(−3+2)4=1
Therefore, the absolute maximum is at x=0 and the value is 16. the absolute minimum is at x=2 and the value is 0
Comments