f(x)={x+4 for 0<x<π,
-x-π for -π<x<0}
The Fourier series expansion of any function f(x) is given by
f(x) = 2a0 + a1cosx + a2cos2x + ........ + b1sinx+b2sin2x + ............ (1)
where,
a0 = π1 ∫−ππ f(x) dx
a0 = π1 (∫−π0 ( - x - π ) dx + ∫0π (x + 4))dx
a0 = π1[ (2−x2−4x)−π0 +(2x2+4x)0π ]
a0 = π ...........................................(2)
an = π1 ∫−ππ f(x) cos nx dx
an = π1 (∫−π0 ( - x - π ) dx + ∫0π (x + 4)) cos nx dx
an = π1 (n(−x−π)sinnx−n2cosnx)−π0 + (n2(x+4)sinnx+n2cosnx)0π
an = π∗n2(−1)n−1 ...............................................(2)
From equation(2) we have
a1 = π−2 , a2 = 0 , a3 = 9π−2
bn = π1 ∫−ππ f(x) sin nx dx
bn = π1 (∫−π0 ( - x - π ) dx + ∫0π (x + 4)) sin nx dx
bn = π1 (n(−x−π)sinnx−n2cosnx)−π0 + (n2(x+4)sinnx+n2cosnx)0π
bn = nπ1 [π(1+(−1)n−4(1−(−1)n)] ............................(3)
From equation (3) we have
b1 = π−8 , b2 = 1 , b3 = 3π−8
f(x) = 2π + π−2cosx+9π−2cos3x + ......... + π−8sinx+sin2x+3π−8sin3x + ........
Comments