Question #206786

Find Fourier series expansion for the function f(x)={x+4 for 0<x<π,-x-π for -π<x<0}




1
Expert's answer
2021-06-15T03:41:00-0400

 f(x)={x+4 for 0<x<π,

-x-π for -π<x<0}




The Fourier series expansion of any function f(x) is given by


f(x) = a02\dfrac{ a_0}{2} + a1cosxa_1 cosx + a2cos2xa_2 cos2x + ........ + b1sinx+b2sin2xb_1 sin x + b_2 sin 2x + ............ (1)



where,


a0 = 1π\dfrac{1}{\pi} ππ\int_{-\pi}^\pi f(x) dx


a0 = 1π\dfrac{1}{\pi} (π0\int^0_{-\pi} ( - x - π\pi ) dx + 0π\int^\pi_{0} (x + 4))dx

a0 = 1π\dfrac{1}{\pi}[ (x224x)π0(\dfrac{-x^2}{2} - 4x)_{-\pi}^0 +(x22+4x)0π(\dfrac{x^2}{2} + 4x)^\pi_0 ]


a0 = π\pi ...........................................(2)



an = 1π\dfrac{1}{\pi} ππ\int_{-\pi}^\pi f(x) cos nx dx


an = 1π\dfrac{1}{\pi} (π0\int^0_{-\pi} ( - x - π\pi ) dx + 0π\int^\pi_{0} (x + 4)) cos nx dx


an = 1π\dfrac{1}{\pi} ((xπ)sinnxncosnxn2)π0(\dfrac{(-x-\pi) sin nx}{n} - \dfrac{cos nx}{n^2})^0_{-\pi} + ((x+4)sinnxn2+cosnxn2)0π(\dfrac{(x + 4)sin nx}{n^2} + \dfrac{cos nx}{n^2})^\pi_0


an = (1)n1πn2\dfrac{(-1)^n - 1}{\pi*n^2} ...............................................(2)



From equation(2) we have



a1 = 2π\dfrac{-2}{\pi} , a2 = 0 , a3 = 29π\dfrac{-2}{9\pi}




bn = 1π\dfrac{1}{\pi} ππ\int_{-\pi}^\pi f(x) sin nx dx


bn = 1π\dfrac{1}{\pi} (π0\int^0_{-\pi} ( - x - π\pi ) dx + 0π\int^\pi_{0} (x + 4)) sin nx dx


bn = 1π\dfrac{1}{\pi} ((xπ)sinnxncosnxn2)π0(\dfrac{(-x-\pi) sin nx}{n} - \dfrac{cos nx}{n^2})^0_{-\pi} + ((x+4)sinnxn2+cosnxn2)0π(\dfrac{(x + 4)sin nx}{n^2} + \dfrac{cos nx}{n^2})^\pi_0


bn = 1nπ\dfrac{1}{n\pi} [π(1+(1)n4(1(1)n)][\pi(1 + (-1)^n - 4(1 - (-1)^n)] ............................(3)


From equation (3) we have


b1 = 8π\dfrac{-8}{\pi} , b2 = 1 , b3 = 83π\dfrac{-8}{3\pi}



f(x) = π2\dfrac{\pi}{2} + 2cosxπ+2cos3x9π\dfrac{-2cos x}{\pi} + \dfrac{-2cos3x}{9\pi} + ......... + 8sinxπ+sin2x+8sin3x3π\dfrac{-8 sin x}{\pi} + sin 2x + \dfrac{-8 sin 3x}{3\pi} + ........









Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS