Question #206964

show that the series ∑∞n=1 sin n theta/n does not converge uniformly on the interval ]0,2π[.


1
Expert's answer
2021-06-15T16:07:05-0400

n=1sinnθn,θ]0,2π[.Then,fn=sinnθn0asnfn=cosnθfn(π)=(1)n does not converge as nThus, the given series is not uniformly covergent.\sum_{n=1}^{\infty} \frac{sin n\theta}{n} , \theta\in]0,2\pi[.\\ Then,\\ f_n=\frac{sin n\theta}{n} \to0as n\to \infty\\ f'_n=cosn\theta\\ f'_n(\pi)=(-1)^n\text{ does not converge as } n\to \infty \\ \text{Thus, the given series is not uniformly covergent.}\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS