Consider the R2−R function f defined by f(x,y)= lnxy and the R−R2 function r defined by r(t) = (t2,et). Determine the value of (f◦r)′(1) by using the General Chain Rule
"f(x,y)=\\ln xy"
"r(t)=(t^2,e^t)"
"(f\\space o\\space r)=f(r(t))=\\ln t^2e^t"
"(f\\space o \\space r)'=\\dfrac{1}{t^2 e^t}\\times(2te^t+e^tt^2)=\\dfrac{2}{t}+1"
"(f\\space o \\space r)'(1)=2+1=3"
Comments
Leave a comment