Question #203771

Consider the R2−R function f defined by f(x,y)= lnxy and the R−R2 function r defined by r(t) = (t2,et). Determine the value of (f◦r)′(1) by using the General Chain Rule


1
Expert's answer
2021-06-08T17:09:19-0400

f(x,y)=lnxyf(x,y)=\ln xy

r(t)=(t2,et)r(t)=(t^2,e^t)

(f o r)=f(r(t))=lnt2et(f\space o\space r)=f(r(t))=\ln t^2e^t

(f o r)=1t2et×(2tet+ett2)=2t+1(f\space o \space r)'=\dfrac{1}{t^2 e^t}\times(2te^t+e^tt^2)=\dfrac{2}{t}+1

(f o r)(1)=2+1=3(f\space o \space r)'(1)=2+1=3


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS