Consider the R2−R function f defined by f(x,y)= lnxy and the R−R2 function r defined by r(t) = (t2,et). Determine the value of (f◦r)′(1) by using the General Chain Rule
f(x,y)=lnxyf(x,y)=\ln xyf(x,y)=lnxy
r(t)=(t2,et)r(t)=(t^2,e^t)r(t)=(t2,et)
(f o r)=f(r(t))=lnt2et(f\space o\space r)=f(r(t))=\ln t^2e^t(f o r)=f(r(t))=lnt2et
(f o r)′=1t2et×(2tet+ett2)=2t+1(f\space o \space r)'=\dfrac{1}{t^2 e^t}\times(2te^t+e^tt^2)=\dfrac{2}{t}+1(f o r)′=t2et1×(2tet+ett2)=t2+1
(f o r)′(1)=2+1=3(f\space o \space r)'(1)=2+1=3(f o r)′(1)=2+1=3
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments