e^x
d/ dx[ ∫ (Int) dt] = x-In 2
2
True or false with full explanation
∫2exlntdt=tlnt∣2ex−t∣2ex=xex−2ln2−ex+2\int ^{e^x}_2lntdt=tlnt|^{e^x}_2-t|^{e^x}_2=xe^x-2ln2-e^x+2∫2exlntdt=tlnt∣2ex−t∣2ex=xex−2ln2−ex+2
ddx(xex−2ln2−ex+2)=ex+xex−ex=xex\frac{d}{dx}(xe^x-2ln2-e^x+2)=e^x+xe^x-e^x=xe^xdxd(xex−2ln2−ex+2)=ex+xex−ex=xex
Answer: false
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments