Question #203692
  1. find the sum, if possible:

     1+3+1/3+1/9+1/27+.........


1
Expert's answer
2021-06-08T10:18:44-0400

Geometric series


i=0arn=a1r,r<1\displaystyle\sum_{i=0}^\infin ar^n=\dfrac{a}{1-r}, |r|<1

We have a=1,r=13,r=13<1.a=1, r=\dfrac{1}{3}, |r|=\dfrac{1}{3}<1. Then


i=0(13)n=1+13+19+127+...=1113=32\displaystyle\sum_{i=0}^\infin (\dfrac{1}{3})^n=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...=\dfrac{1}{1-\dfrac{1}{3}}=\dfrac{3}{2}

Therefore


1+3+13+19+127+...=3+32=1+3+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+...=3+\dfrac{3}{2}=

=92=4.5=\dfrac{9}{2}=4.5




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS