The function f(x)=x2+12x is one-to-one function on [−1,1].
Hence the function f(x) has inverse.
f(x)=x2+12x
f′(x)=(x2+12x)′=(x2+1)22(x2+1−2x2)=(x2+1)22(1−x2)
Inverse FunctionTheorem
Let f(x) be a function that is both invertible and differentiable.
Let y=f−1(x) be the inverse of f(x).
For all x satisfying f′(f−1(x))=0,
dxdy=dxd(f−1(x))=(f−1)′(x)=f′(f−1(x))1
f′(54)=((54)2+1)22(1−(54)2)=1681450
Comments