Question #198719

1.By considering the derivative of the function f : [−1, 1] → R defined by f(x) =\frac{2x}{x^2+1}, show thatf^{-1} exists and find \left(f\right)^' (\frac{4}{5} ).


1
Expert's answer
2021-05-28T09:59:28-0400

The function f(x)=2xx2+1f(x)=\dfrac{2x}{x^2+1} is one­-to-one function on [1,1].[-1, 1].

Hence the function f(x)f(x) has inverse.


f(x)=2xx2+1f(x)=\dfrac{2x}{x^2+1}

f(x)=(2xx2+1)=2(x2+12x2)(x2+1)2=2(1x2)(x2+1)2f'(x)=(\dfrac{2x}{x^2+1})'=\dfrac{2(x^2+1-2x^2)}{(x^2+1)^2}=\dfrac{2(1-x^2 )}{(x^2+1)^2}

Inverse FunctionTheorem

Let f(x)f(x) be a function that is both invertible and differentiable.

Let y=f1(x)y=f^{-1}(x)  be the inverse of f(x).f(x).

For all xx satisfying f(f1(x))0,f'(f^{-1}(x))\not=0,


dydx=ddx(f1(x))=(f1)(x)=1f(f1(x))\dfrac{dy}{dx}=\dfrac{d}{dx}(f^{-1}(x))=(f^{-1})'(x)=\dfrac{1}{f'(f^{-1}(x))}


f(45)=2(1(45)2)((45)2+1)2=4501681f'(\dfrac{4}{5})=\dfrac{2(1-(\dfrac{4}{5})^2)}{((\dfrac{4}{5})^2+1)^2}=\dfrac{450}{1681}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS