Question #198649

Let 𝐹 = 2𝑥𝑧𝑖 − 𝑥𝑗 + 𝑦 2𝑘. Evaluate 𝑉 𝐹𝑑𝑉 is the region bounded by the surfaces 𝑥 = 0, 𝑦 = 0, 𝑧 = 𝑥 2 , 𝑧 = 4.


1
Expert's answer
2022-08-04T11:07:54-0400

F=2xzixj+y2kF=2xzi-xj+y^2k

The region bounded by the surfaces: x=0,y=0,z=x2+y2,z=4x=0,y=0,z=x^2+y^2,z=4

(Modification z=x2+y2z=x^2+y^2 was made, because the region is bounded in y-direction only from one side: y=0.)


divF=x(2xz)+y(x)+z(y2)=2zdivF=\frac{\partial}{\partial x}(2xz)+\frac{\partial}{\partial y}(-x)+\frac{\partial}{\partial z}(y^2)=2z


Let the region bounded by the surfaces: x=0,y=0,z=x2+y2,z=4x=0,y=0,z=x^2+y^2,z=4


divFdV=202dx02dyx2+y24zdz=02dx02(16(x2+y2)2)dy=\iiint divFdV=2\int^2_0dx\int^2_0dy\int^4_{x^2+y^2}zdz=\int^2_0dx\int^2_0(16-(x^2+y^2)^2)dy=


=02(16yx4y2x2y3/3y5/5)02dx=02(322x416x2/332/5)dx==\int^2_0(16y-x^4y-2x^2y^3/3-y^5/5)|^2_0dx=\int^2_0(32-2x^4-16x^2/3-32/5)dx=


=(32x2x5/516x3/932x/5)02=6464/5128/964/5==(32x-2x^5/5-16x^3/9-32x/5)|^2_0=64-64/5-128/9-64/5=


=1088/45=1088/45



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS