Question #198624

3) Prove by induction that for all natural numbers n:


(d) 1/(1)(3) + 1/(3)(5) + · · · +1/(2n − 1)(2n + 1) = n/(2n + 1)




1
Expert's answer
2021-05-31T06:36:18-0400

Step 1: Given data


P(n) : 11.3+13.5++1(2n1)(2n+1)=n(2n+1)\dfrac{1}{1.3}+\dfrac{1}{3.5}+−−−−−+\dfrac{1}{(2n−1)(2n+1)}=\dfrac{n}{(2n+1)}


Step 2: To prove, P(1)P(1) is true


 LHS=11.3=13LHS=\dfrac{1}{1.3}=\dfrac{1}{3}


RHS=12×1+1=13RHS=\dfrac{1}{2×1+1}=\dfrac{1}{3}


Thus, P(1)P(1) is true.


Step 3: Assume that the statement is true for n=kn = k , where k is some positive integer.


11.3+13.5++1(2k1)(2k+1)=k(2k+1)\dfrac{1}{1.3}+\dfrac{1}{3.5}+−−−−−+\dfrac{1}{(2k−1)(2k+1)}=\dfrac{k}{(2k+1)}

 

Step 4:  For n=k+1n=k+1  


LHS=11.3+13.5++1(2k1)(2k+1)+1(2(k+1)1)(2(k+1)+1)LHS= \dfrac{1}{1.3}+\dfrac{1}{3.5}+−−−−+\dfrac{1}{(2k−1)(2k+1)}+\dfrac{1}{(2(k+1)−1)(2(k+1)+1)}


=k(2k+1)+1(2(k+1)1)(2(k+1)+1)=\dfrac{k}{(2k+1)}+\dfrac{1}{(2(k+1)−1)(2(k+1)+1)}     


 =k(2k+1)+1(2k+1)(2k+3)=\dfrac{k}{(2k+1)}+\dfrac{1}{(2k+1)(2k+3)}


=2k2+3k+1(2k+1)(2k+3)=\dfrac{2k^2+3k+1}{(2k+1)(2k+3)}


=(2k+1)(k+1)(2k+1)(2k+3)=\dfrac{(2k+1)(k+1)}{(2k+1)(2k+3)}


LHS=(k+1)(2k+3)LHS=\dfrac{(k+1)}{(2k+3)}

  

Step 5:

RHS=(k+1)(2(k+1)+1)RHS=\dfrac{(k+1)}{(2(k+1) + 1)}


=k+12k+3=\dfrac{k+1} { 2k + 3}


⇒LHS=RHS 

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS