3) Prove by induction that for all natural numbers n:
(d) 1/(1)(3) + 1/(3)(5) + · · · +1/(2n − 1)(2n + 1) = n/(2n + 1)
Step 1: Given data
P(n) : "\\dfrac{1}{1.3}+\\dfrac{1}{3.5}+\u2212\u2212\u2212\u2212\u2212+\\dfrac{1}{(2n\u22121)(2n+1)}=\\dfrac{n}{(2n+1)}"
Step 2: To prove, "P(1)" is true
"LHS=\\dfrac{1}{1.3}=\\dfrac{1}{3}"
"RHS=\\dfrac{1}{2\u00d71+1}=\\dfrac{1}{3}"
Thus, "P(1)" is true.
Step 3: Assume that the statement is true for "n = k" , where k is some positive integer.
"\\dfrac{1}{1.3}+\\dfrac{1}{3.5}+\u2212\u2212\u2212\u2212\u2212+\\dfrac{1}{(2k\u22121)(2k+1)}=\\dfrac{k}{(2k+1)}"
Step 4: For "n=k+1"
"LHS= \\dfrac{1}{1.3}+\\dfrac{1}{3.5}+\u2212\u2212\u2212\u2212+\\dfrac{1}{(2k\u22121)(2k+1)}+\\dfrac{1}{(2(k+1)\u22121)(2(k+1)+1)}"
"=\\dfrac{k}{(2k+1)}+\\dfrac{1}{(2(k+1)\u22121)(2(k+1)+1)}"
"=\\dfrac{k}{(2k+1)}+\\dfrac{1}{(2k+1)(2k+3)}"
"=\\dfrac{2k^2+3k+1}{(2k+1)(2k+3)}"
"=\\dfrac{(2k+1)(k+1)}{(2k+1)(2k+3)}"
"LHS=\\dfrac{(k+1)}{(2k+3)}"
Step 5:
"RHS=\\dfrac{(k+1)}{(2(k+1) + 1)}"
"=\\dfrac{k+1} { 2k + 3}"
⇒LHS=RHS
Comments
Leave a comment