3) Write concisely, using sigma notation:
(a) 2 + 5 + 8 + 11 + 14 + 17
(b) 1 + 5 + 9 + 13 + · · · (to n terms)
(c) (1)(2) + (2)(3) + (3)(4) + (4)(5) + · · · + (n − 1)n
(d) (1)(2)(4) + (2)(3)(6) + (3)(4)(8) + (4)(5)(10) + · · · (to n terms)
(e) 3 + 32 + 33 + 34 + 35 + · · · + 310
"(a) \\newline\n2 + 5 + 8 + 11 + 14 + 17+...\\newline\n=\\sum_{n=1}^\\infty(3n-1)\n\\newline\n(b)\\newline\n 1 + 5 + 9 + 13 + \u00b7 \u00b7 \u00b7 (to \\space n \\space\n terms)\\newline\n=\\sum_{n=1}^n (4n-3)\n\\newline\n(c)\\newline\n (1)(2) + (2)(3) + (3)(4) + (4)(5) + \u00b7 \u00b7 \u00b7 + (n \u2212 1)n\\newline\n=\\sum_{n=1}^n n(n+1)\n\\newline\n(d)\\newline\n (1)(2)(4) + (2)(3)(6) + (3)(4)(8) + (4)(5)(10) + \u00b7 \u00b7 \u00b7 (to \\space\n n \\space\n terms)\\newline\n=\\sum_{n=1}^n n(n+1)(2n+2)\n\\newline\n(e)\\newline\n 3 + 3^2 + 3^3 + 3^4 + 3^5 + \u00b7 \u00b7 \u00b7 + 3^{10}\\newline\n=\\sum_{n=1}^{10} 3^n"
Comments
Leave a comment