Question #198648

3) Write concisely, using sigma notation:

(a) 2 + 5 + 8 + 11 + 14 + 17

(b) 1 + 5 + 9 + 13 + · · · (to n terms)

(c) (1)(2) + (2)(3) + (3)(4) + (4)(5) + · · · + (n − 1)n

(d) (1)(2)(4) + (2)(3)(6) + (3)(4)(8) + (4)(5)(10) + · · · (to n terms)

(e) 3 + 32 + 33 + 34 + 35 + · · · + 310



1
Expert's answer
2021-05-31T16:04:39-0400

(a)2+5+8+11+14+17+...=n=1(3n1)(b)1+5+9+13+(to n terms)=n=1n(4n3)(c)(1)(2)+(2)(3)+(3)(4)+(4)(5)++(n1)n=n=1nn(n+1)(d)(1)(2)(4)+(2)(3)(6)+(3)(4)(8)+(4)(5)(10)+(to n terms)=n=1nn(n+1)(2n+2)(e)3+32+33+34+35++310=n=1103n(a) \newline 2 + 5 + 8 + 11 + 14 + 17+...\newline =\sum_{n=1}^\infty(3n-1) \newline (b)\newline 1 + 5 + 9 + 13 + · · · (to \space n \space terms)\newline =\sum_{n=1}^n (4n-3) \newline (c)\newline (1)(2) + (2)(3) + (3)(4) + (4)(5) + · · · + (n − 1)n\newline =\sum_{n=1}^n n(n+1) \newline (d)\newline (1)(2)(4) + (2)(3)(6) + (3)(4)(8) + (4)(5)(10) + · · · (to \space n \space terms)\newline =\sum_{n=1}^n n(n+1)(2n+2) \newline (e)\newline 3 + 3^2 + 3^3 + 3^4 + 3^5 + · · · + 3^{10}\newline =\sum_{n=1}^{10} 3^n


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS