3. (a) Use the Riemann sum to calculate the area under the curve y = −x 2 + 3x + 2 between x = −1 and x = 2.
b.(b) Let R = \lim _{n\to \infty \:}\left(\sum _{j=1}^{n-1}\:\left(3+\frac{4j}{n}\right)^2.\frac{4}{n}\right), write R as a definite integral and hence evaluate R
c.) If x^y\:=\:e^{x-y}, prove that \frac{d}{dx}=\frac{ln\:x}{\left(1+lnx\right)^2}
Part a.
"\u222babf(x)dx\u2248\u0394x(f(x0)+f(x1)+f(x2)+\u22ef+f(xn\u22122)+f(xn\u22121))"
"where \u0394x=\\frac{b\u2212a}{n}"
We have that "a=\u22121, b=2, n=4."
"Therefore, \u0394x=\\frac{2\u2212(\u22121)}{4}=3\/4"
Divide the interval "[\u22121,2]" into n=4 subintervals of the length Δx=3/4 with the following endpoints "a=\u22121 , \u22121\/4, 1\/2, 5\/4, 2=b"
Now, just evaluate the function at the left endpoints of the subintervals.
"f(x0)=f(\u22121)=0"
"f(x1)=f(\u22121\/4)=21\/16=1.3125"
"f(x2)=f(1\/2)=15\/4=3.75"
"f(x3)=f(5\/4)=117\/16=7.3125"
Finally, just sum up the above values and multiply by "\u0394x=3\/4"
"3\/4(0+1.3125+3.75+7.3125)=9.28125"
Part b
"\\lim _{n\\to \\infty \\:}\\left(\\sum _{i=1}^n\\left(3+\\frac{4n}{n}\\right)^2\\frac{4}{n}\\right)"
"\\mathrm{The\\:definite\\:integral\\:is\\:defined\\:as:\\:}\\lim _{n\\to \\infty }\\left(\\sum _{i=1}^n\\left(f\\left(c_i\\right)\\Delta \\:x\\right)\\right)=\\int _a^bf\\left(x\\right)dx"
"\\mathrm{Where\\:}\u0394x=\\frac{b-a}{n},\\:\\mathrm{and}\\:c_i=a+\u0394x\u22c5i"
"=\\int _0^1196dx"
"=196"
Part c
"=e^{x-y}\\frac{d}{dx}\\left(x-y\\right)"
"=1-\\frac{d}{dx}\\left(y\\right)"
"=e^{x-y}\\left(1-\\frac{d}{dx}\\left(y\\right)\\right)"
"\\left(\\frac{\\ln \\left(x\\right)}{\\left(1+\\ln \\left(x\\right)\\right)^2}\\right)"
Comments
Leave a comment