Answer to Question #198718 in Calculus for desmond

Question #198718

3. (a) Use the Riemann sum to calculate the area under the curve y = −x 2 + 3x + 2 between x = −1 and x = 2. 


b.(b) Let R = \lim _{n\to \infty \:}\left(\sum _{j=1}^{n-1}\:\left(3+\frac{4j}{n}\right)^2.\frac{4}{n}\right), write R as a definite integral and hence evaluate R


c.) If x^y\:=\:e^{x-y}, prove that \frac{d}{dx}=\frac{ln\:x}{\left(1+lnx\right)^2}


1
Expert's answer
2021-05-28T05:26:19-0400

Part a.

abf(x)dxΔx(f(x0)+f(x1)+f(x2)++f(xn2)+f(xn1))∫abf(x)dx≈Δx(f(x0)+f(x1)+f(x2)+⋯+f(xn−2)+f(xn−1))

whereΔx=banwhere Δx=\frac{b−a}{n}

We have that a=1,b=2,n=4.a=−1, b=2, n=4.

Therefore,Δx=2(1)4=3/4Therefore, Δx=\frac{2−(−1)}{4}=3/4

Divide the interval [1,2][−1,2]  into n=4 subintervals of the length Δx=3/4 with the following endpoints a=1,1/4,1/2,5/4,2=ba=−1 , −1/4, 1/2, 5/4, 2=b

Now, just evaluate the function at the left endpoints of the subintervals.

f(x0)=f(1)=0f(x0)=f(−1)=0

f(x1)=f(1/4)=21/16=1.3125f(x1)=f(−1/4)=21/16=1.3125

f(x2)=f(1/2)=15/4=3.75f(x2)=f(1/2)=15/4=3.75

f(x3)=f(5/4)=117/16=7.3125f(x3)=f(5/4)=117/16=7.3125

Finally, just sum up the above values and multiply by Δx=3/4Δx=3/4

3/4(0+1.3125+3.75+7.3125)=9.281253/4(0+1.3125+3.75+7.3125)=9.28125


Part b

limn(i=1n(3+4nn)24n)\lim _{n\to \infty \:}\left(\sum _{i=1}^n\left(3+\frac{4n}{n}\right)^2\frac{4}{n}\right)

Thedefiniteintegralisdefinedas:limn(i=1n(f(ci)Δx))=abf(x)dx\mathrm{The\:definite\:integral\:is\:defined\:as:\:}\lim _{n\to \infty }\left(\sum _{i=1}^n\left(f\left(c_i\right)\Delta \:x\right)\right)=\int _a^bf\left(x\right)dx

WhereΔx=ban,andci=a+Δxi\mathrm{Where\:}Δx=\frac{b-a}{n},\:\mathrm{and}\:c_i=a+Δx⋅i

=01196dx=\int _0^1196dx

=196=196


Part c

=exyddx(xy)=e^{x-y}\frac{d}{dx}\left(x-y\right)

=1ddx(y)=1-\frac{d}{dx}\left(y\right)

=exy(1ddx(y))=e^{x-y}\left(1-\frac{d}{dx}\left(y\right)\right)

(ln(x)(1+ln(x))2)\left(\frac{\ln \left(x\right)}{\left(1+\ln \left(x\right)\right)^2}\right)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment