Part a.
∫abf(x)dx≈Δx(f(x0)+f(x1)+f(x2)+⋯+f(xn−2)+f(xn−1))
whereΔx=nb−a
We have that a=−1,b=2,n=4.
Therefore,Δx=42−(−1)=3/4
Divide the interval [−1,2] into n=4 subintervals of the length Δx=3/4 with the following endpoints a=−1,−1/4,1/2,5/4,2=b
Now, just evaluate the function at the left endpoints of the subintervals.
f(x0)=f(−1)=0
f(x1)=f(−1/4)=21/16=1.3125
f(x2)=f(1/2)=15/4=3.75
f(x3)=f(5/4)=117/16=7.3125
Finally, just sum up the above values and multiply by Δx=3/4
3/4(0+1.3125+3.75+7.3125)=9.28125
Part b
limn→∞(∑i=1n(3+n4n)2n4)
Thedefiniteintegralisdefinedas:limn→∞(∑i=1n(f(ci)Δx))=∫abf(x)dx
WhereΔx=nb−a,andci=a+Δx⋅i
=∫01196dx
=196
Part c
=ex−ydxd(x−y)
=1−dxd(y)
=ex−y(1−dxd(y))
((1+ln(x))2ln(x))
Comments
Leave a comment