Question #198205

(b) By considering the derivative of the function f : [−1, 1] → R defined by f(x) = \frac{2x}{\:x^2+1} , show that f^{-1} exists and find \left(f^{-1}\right)^' ( \frac{4}{\:5} ).


1
Expert's answer
2021-05-27T16:13:43-0400

The inverse function theorem helps us to validate that f1f^{-1} exist.

And, we have that

(f1)(x)=1f(f1(x))(f^{-1})'(x) = \dfrac{1}{f'(f^{-1}(x))}

First, we find the derivative of f using quotient rule

f(x)=(x2+1)(2)(2x)(2x)(x2+1)2=2(1x2)(x2+1)2f'(x) = \dfrac{(x^2+1)(2)-(2x)(2x)}{(x^2+1)^2} = \dfrac{2(1-x^2)}{(x^2+1)^2}

Next, we find the inverse of f.

Suppose y=f(x) for x in the defined domain and y in R. So, we have that

y=2xx2+1x2y+y=2xx2y2x=yx22xy=1(x1y)2=1y2y2x1y=±1y2y2x=1±1y2yy= \dfrac{2x}{x^2+1} \\ x^2y+y=2x\\x^2y-2x=-y\\ x^2-\frac{2x}{y}=-1\\(x-\frac{1}{y})^2=\dfrac{1-y^2}{y^2}\\ x-\frac{1}{y} = \pm \sqrt{\dfrac{1-y^2}{y^2}} \\ x= \dfrac{1 \pm \sqrt{1-y^2}}{y}

By putting x everywhere, we see y, we know that the inverse function is

f1(x)=1±1x2xf^{-1}(x)= \dfrac{1 \pm \sqrt{1-x^2}}{x}

Taking positive square roots, we have that

f1(x)=1+1x2xf^{-1}(x)= \dfrac{1 + \sqrt{1-x^2}}{x}

So,

(f1)(45)=1f(f1(45))(f^{-1})'(\frac{4}{5}) = \dfrac{1}{f'(f^{-1}(\frac{4}{5}))}

Consider,

f1(45)=1+1(45)245=2f^{-1}(\frac{4}{5}) = \dfrac{1 + \sqrt{1-(\frac{4}{5})^2}}{\frac{4}{5}} = 2

So, (f1)(45)=1f(f1(45))(f^{-1})'(\frac{4}{5}) = \dfrac{1}{f'(f^{-1}(\frac{4}{5}))} becomes (f1)(45)=1f(2)(f^{-1})'(\frac{4}{5}) = \dfrac{1}{f'(2)}

Also, f(2)=2(122)(22+1)2=625f'(2) = \dfrac{2(1-2^2)}{(2^2+1)^2} = -\dfrac{6}{25}

Hence, (f1)(45)=256(f^{-1})'(\frac{4}{5}) = -\dfrac{25}{6}



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS