2. (a) Express 5 sinh x + cosh x in the form Ae^x+Be^{-x}, where A and B are integers.
(b) Solve the equation 5 sinh x + cosh x + 5 = 0, giving your answer in the form ln a, where a ∈ R.
(a) 5 sinh x + cosh x
"=5.\\frac{e^x-e^{-x}}{2}+\\frac{e^x+e^{-x}}{2}"
"=\\frac{5}{2}e^x-\\frac{5}{2}e^{-x}+\\frac{1}{2}e^x+\\frac{1}{2}e^{-x} \\\\\n=\\frac{6}{2}e^x+\\frac{-4}{2}e^{-x}"
"\\boxed{A=3 , B=-2}"
(b) 5 sinh x + cosh x + 5 = 0
"=5.\\frac{e^x-e^{-x}}{2}+\\frac{e^x+e^{-x}}{2}+5=0"
let "e^x" = t
than
"\\frac{5}{2}(t-\\frac{1}{t})+\\frac{1}{2}(t+\\frac{1}{t})+5=0"
"\\implies3t^2+5t-2=0"
"t=\\frac{-5\\pm\\sqrt{49}}{6}"
"e^x=\\frac{-5+7}{6}" "\\because""e^x>0" (always)
"\\boxed{x=ln(\\frac{1}{3})}"
here a="\\frac{1}{3}"
Comments
Leave a comment