(a) 5 sinh x + cosh x
= 5. e x − e − x 2 + e x + e − x 2 =5.\frac{e^x-e^{-x}}{2}+\frac{e^x+e^{-x}}{2} = 5. 2 e x − e − x + 2 e x + e − x
= 5 2 e x − 5 2 e − x + 1 2 e x + 1 2 e − x = 6 2 e x + − 4 2 e − x =\frac{5}{2}e^x-\frac{5}{2}e^{-x}+\frac{1}{2}e^x+\frac{1}{2}e^{-x} \\
=\frac{6}{2}e^x+\frac{-4}{2}e^{-x} = 2 5 e x − 2 5 e − x + 2 1 e x + 2 1 e − x = 2 6 e x + 2 − 4 e − x
A = 3 , B = − 2 \boxed{A=3 , B=-2} A = 3 , B = − 2
(b) 5 sinh x + cosh x + 5 = 0
= 5. e x − e − x 2 + e x + e − x 2 + 5 = 0 =5.\frac{e^x-e^{-x}}{2}+\frac{e^x+e^{-x}}{2}+5=0 = 5. 2 e x − e − x + 2 e x + e − x + 5 = 0
let e x e^x e x = t
than
5 2 ( t − 1 t ) + 1 2 ( t + 1 t ) + 5 = 0 \frac{5}{2}(t-\frac{1}{t})+\frac{1}{2}(t+\frac{1}{t})+5=0 2 5 ( t − t 1 ) + 2 1 ( t + t 1 ) + 5 = 0
⟹ 3 t 2 + 5 t − 2 = 0 \implies3t^2+5t-2=0 ⟹ 3 t 2 + 5 t − 2 = 0
t = − 5 ± 49 6 t=\frac{-5\pm\sqrt{49}}{6} t = 6 − 5 ± 49
e x = − 5 + 7 6 e^x=\frac{-5+7}{6} e x = 6 − 5 + 7 ∵ \because ∵ e x > 0 e^x>0 e x > 0 (always)
x = l n ( 1 3 ) \boxed{x=ln(\frac{1}{3})} x = l n ( 3 1 )
here a=1 3 \frac{1}{3} 3 1
Comments