2. (a) Express 5 sinh x + cosh x in the form Ae^x+Be^{-x}, where A and B are integers.
(b) Solve the equation 5 sinh x + cosh x + 5 = 0, giving your answer in the form ln a, where a ∈ R.
(a) 5 sinh x + cosh x
=5.ex−e−x2+ex+e−x2=5.\frac{e^x-e^{-x}}{2}+\frac{e^x+e^{-x}}{2}=5.2ex−e−x+2ex+e−x
=52ex−52e−x+12ex+12e−x=62ex+−42e−x=\frac{5}{2}e^x-\frac{5}{2}e^{-x}+\frac{1}{2}e^x+\frac{1}{2}e^{-x} \\ =\frac{6}{2}e^x+\frac{-4}{2}e^{-x}=25ex−25e−x+21ex+21e−x=26ex+2−4e−x
A=3,B=−2\boxed{A=3 , B=-2}A=3,B=−2
(b) 5 sinh x + cosh x + 5 = 0
=5.ex−e−x2+ex+e−x2+5=0=5.\frac{e^x-e^{-x}}{2}+\frac{e^x+e^{-x}}{2}+5=0=5.2ex−e−x+2ex+e−x+5=0
let exe^xex = t
than
52(t−1t)+12(t+1t)+5=0\frac{5}{2}(t-\frac{1}{t})+\frac{1}{2}(t+\frac{1}{t})+5=025(t−t1)+21(t+t1)+5=0
⟹ 3t2+5t−2=0\implies3t^2+5t-2=0⟹3t2+5t−2=0
t=−5±496t=\frac{-5\pm\sqrt{49}}{6}t=6−5±49
ex=−5+76e^x=\frac{-5+7}{6}ex=6−5+7 ∵\because∵ex>0e^x>0ex>0 (always)
x=ln(13)\boxed{x=ln(\frac{1}{3})}x=ln(31)
here a=13\frac{1}{3}31
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments