Question #196543

Find the surface area of the function x= ^3 square root of y between x=0 and x=1 when revolved around the axis


1
Expert's answer
2021-05-24T04:11:56-0400

Solution:

x=y3y=x3=f(x)x=\sqrt[3]{y} \\\Rightarrow y=x^3=f(x)

Between x=0,x=1x=0,x=1 , revolved around xx-axis.

Surface area=2πabf(x)1+[f(x)]2dx=2\pi\int_a^bf(x)\sqrt{1+[f'(x)]^2}dx

=2π01x31+[3x2]2dx=2π01x31+9x4dx ...(i)=2\pi\int_0^1 x^3\sqrt{1+[3x^2]^2}dx \\=2\pi\int_0^1 x^3\sqrt{1+9x^4}dx\ ...(i)

Put 1+9x4=t1+9x^4=t

36x3=dtdxx3dx=dt36\Rightarrow 36x^3=\frac{dt}{dx} \\\Rightarrow x^3 dx=\frac{dt}{36}

When x=0,t=1x=0,t=1

When x=1,t=10x=1,t=10

So, (i) becomes,

Surface area=2π36110tdt=\frac{2\pi}{36}\int_1^{10}\sqrt{t}dt

=π18[23t3/2]110=π27[103/21]=3.563 units2=\frac{\pi}{18}[\frac23t^{3/2}]_1^{10} \\=\frac{\pi}{27}[{10}^{3/2}-1] \\=3.563\ units^2


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS