Find the surface area of the function x= ^3 square root of y between x=0 and x=1 when revolved around the axis
Solution:
"x=\\sqrt[3]{y}\n\\\\\\Rightarrow y=x^3=f(x)"
Between "x=0,x=1" , revolved around "x"-axis.
Surface area"=2\\pi\\int_a^bf(x)\\sqrt{1+[f'(x)]^2}dx"
"=2\\pi\\int_0^1 x^3\\sqrt{1+[3x^2]^2}dx\n\\\\=2\\pi\\int_0^1 x^3\\sqrt{1+9x^4}dx\\ ...(i)"
Put "1+9x^4=t"
"\\Rightarrow 36x^3=\\frac{dt}{dx}\n\\\\\\Rightarrow x^3 dx=\\frac{dt}{36}"
When "x=0,t=1"
When "x=1,t=10"
So, (i) becomes,
Surface area"=\\frac{2\\pi}{36}\\int_1^{10}\\sqrt{t}dt"
"=\\frac{\\pi}{18}[\\frac23t^{3\/2}]_1^{10}\n\\\\=\\frac{\\pi}{27}[{10}^{3\/2}-1]\n\\\\=3.563\\ units^2"
Comments
Leave a comment