Find the surface area of the function x= ^3 square root of y between x=0 and x=1 when revolved around the axis
Solution:
x=y3⇒y=x3=f(x)x=\sqrt[3]{y} \\\Rightarrow y=x^3=f(x)x=3y⇒y=x3=f(x)
Between x=0,x=1x=0,x=1x=0,x=1 , revolved around xxx-axis.
Surface area=2π∫abf(x)1+[f′(x)]2dx=2\pi\int_a^bf(x)\sqrt{1+[f'(x)]^2}dx=2π∫abf(x)1+[f′(x)]2dx
=2π∫01x31+[3x2]2dx=2π∫01x31+9x4dx ...(i)=2\pi\int_0^1 x^3\sqrt{1+[3x^2]^2}dx \\=2\pi\int_0^1 x^3\sqrt{1+9x^4}dx\ ...(i)=2π∫01x31+[3x2]2dx=2π∫01x31+9x4dx ...(i)
Put 1+9x4=t1+9x^4=t1+9x4=t
⇒36x3=dtdx⇒x3dx=dt36\Rightarrow 36x^3=\frac{dt}{dx} \\\Rightarrow x^3 dx=\frac{dt}{36}⇒36x3=dxdt⇒x3dx=36dt
When x=0,t=1x=0,t=1x=0,t=1
When x=1,t=10x=1,t=10x=1,t=10
So, (i) becomes,
Surface area=2π36∫110tdt=\frac{2\pi}{36}\int_1^{10}\sqrt{t}dt=362π∫110tdt
=π18[23t3/2]110=π27[103/2−1]=3.563 units2=\frac{\pi}{18}[\frac23t^{3/2}]_1^{10} \\=\frac{\pi}{27}[{10}^{3/2}-1] \\=3.563\ units^2=18π[32t3/2]110=27π[103/2−1]=3.563 units2
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments